Recent advances in coupled-cluster computations of nuclei

Gaute Hagen Oak Ridge National Laboratory

Progress in Ab Initio Nuclear Theory

TRIUMF, Vancouver March 2nd, 2023

Collaborators

@ ORNL / UTK: B. Acharya, T. Djärv, B. Hu, G. R. Jansen, Z. H.Sun, T. Papenbrock

- @ CEA/Saclay: T. Duguet
- @ Chalmers: A. Ekström, C. Forssén
- @ Mainz: F. Bonaiti, S. Bacca, W. G. Jiang, J. E. Sobczyk
- @ ND: S. R. Stroberg
- @ LANL: S. Gandolfi, D. Lonardoni, S. Novario
- @ TRIUMF: P. Gysbers, J. Holt, P. Navratil
- @ TU Darmstadt: T. Miyagi, A. Tichai

Coupled-cluster computations of deformed nuclei

Coupled-cluster computations of deformed nuclei

The key lies in choosing the correct starting point

Coupled-cluster method

Coupled-cluster computations of deformed nuclei

- 1. Compute Hartree-Fock reference state
 - Nontrivial vacuum state informs us about emergent breaking of symmetries
 - Yields normal-ordered two-body Hamiltonian
- 2. Include dynamical (extensive) correlations via coupled-cluster theory
 - (or via IMSRG, or Gorkov methods, or Green's functions)
 - Cost increases polynomial with mass number
- 3. Perform symmetry projections

The total energy of

a nucleus

- Non-extensive contributions to the energy
- Often relevant for transition matrix elements

Dynamic correlation (large contributionStatic correlation (can useand requires size-extensive methods)non size-extensive methods)

$$\mathbf{I} = E_{\rm ref} + \Delta E_{\rm CC} + \delta E$$

Coupled-cluster computations of deformed nuclei – natural orbitals

- Coupled-cluster calculations from axially symmetric reference states
- Natural orbitals from many-body perturbation theory [A. Tichai, et al PRC (2019)] yields rapid convergence with respect 3p3h excitations in CCSDT-1
- Hartree-Fock with projection after variation (PAV) gives upper bound on the energy gain from symmetry restoration

S. J. Novario, G. Hagen, G. R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020)

Computations of magnesium isotopes

- Symmetry broken reference states allow us to address open-shell/deformed nuclei
- Dripline predicted at ⁴⁰Mg continuum may impact the location of the dripline
- Charge radii predicts shell closures at N = 8, N = 14, and at N = 20
- The bands indicate uncertainties from model-space truncations

S. J. Novario, G. Hagen, G. R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020)

Impact of symmetry projection on radii

G. Hagen, S. J. Novario, Z. H. Sun, T. Papenbrock, G. R. Jansen, J. G. Lietz, T. Duguet, A. Tichai Phys. Rev. C 105, 064311 (2022)

	Unprojected			Projected				
²⁰ Ne		$\langle J^2 \rangle$	$R_{\mathrm ch}~(\mathrm{fm})$	δE	$E^{(0)} = E + \delta E$	$R_{\mathrm ch}$ (fm)	$E^{(2)} - E^{(0)}$	$E^{(4)} - E^{(0)}$
HF	-59.442	22.778	2.623	-5.760	-65.202	2.619	1.26	4.34
SLD	-122.467	19.059	2.601	-4.332	-126.799	2.598	1.13	3.90
CCD	-142.666	16.128	2.621	-3.627	-146.293	2.620	1.19	3.68

	Unprojected			Projected				
^{34}Mg	E	$\langle J^2 \rangle$	$R_{\mathrm ch}~(\mathrm{fm})$	δE	$E^{(0)} = E + \delta E$	$R_{\mathrm ch}~(\mathrm{fm})$	$E^{(2)} - E^{(0)}$	$E^{(4)} - E^{(0)}$
HF	-85.687	24.740	2.727	-3.184	-88.87	2.724	0.67	2.29
SLD	-177.938	22.790	2.707	-2.479	-180.42	2.704	0.60	2.05
CCD	-221.315	20.213	2.725	-1.893	-223.21	2.722	0.53	1.69

Rotational structure of nuclei from ab-initio methods

G. Hagen, S. J. Novario, Z. H. Sun, T. Papenbrock, G. R. Jansen, J. G. Lietz, T. Duguet, A. Tichai Phys. Rev. C 105, 064311 (2022)

Symmetry restored coupled-cluster theory

Hermitian

See Thomas Papenbrock's talk

Projection after variation (PAV): $E^{(J)} = \frac{\langle \widetilde{\Psi} | P_J H | \Psi \rangle}{\langle \widetilde{\Psi} | P_J | \Psi \rangle}$

Right state is parametrized:
$$|\Psi
angle=e^T|\Phi_0
angle$$

Naïve

Left state is parametrized differently:

Bi-variational

This talk

$$\langle \widetilde{\Psi}| = \langle \Phi_0 | (1+\Lambda) e^{-T} ext{ or } \langle \widetilde{\Psi}| = \langle \Phi_0 | ext{ or } \langle \widetilde{\Psi}| = \langle \Psi |$$

Image credit: Wikimedia Commons

For axial symmetry around the zaxis the rotation operator is:

$$R(\beta) \equiv e^{i\beta J_y}$$

$$P_J = \frac{1}{2} \int_0^\pi d\beta \sin(\beta) d_{00}^J(\beta) R(\beta)$$

Symmetry restored coupled-cluster theory

The kernels can be evaluated by using Thouless theorem:

 $\langle \Phi_0 | R(\beta) = \langle \Phi_0 | R(\beta) | \Phi_0 \rangle \langle \Phi_0 | e^{V_1(\beta)}$

$$\mathcal{H}(\beta) = \langle \Phi | \overline{R}(\beta) | \Phi \rangle \langle \Phi | Z(\beta) \widetilde{H}(\beta) e^{V(\beta)} e^{T_2} | \Phi \rangle$$
$$\mathcal{N}(\beta) = \langle \Phi | \overline{R}(\beta) | \Phi \rangle \langle \Phi | Z(\beta) e^{V(\beta)} e^{T_2} | \Phi \rangle$$

Similarity transformed rotation operator and Hamiltonian:

 $\overline{R}(\beta) = e^{-T_1} R(\beta) e^{T_1}$ $\widetilde{H}(\beta) = e^{V_1(\beta)} \overline{H} e^{-V_1(\beta)}$

$$e^{V(\beta)}e^{T_2}|\Phi\rangle = e^{W_0(\beta) + W_1(\beta) + W_2(\beta) + \dots}|\Phi\rangle$$

- Does not truncate
- Approximate restoration of symmetries
- Solve for disentangled amplitudes via ODEs
 [see Qiu et al, J. Chem. Phys. 147, 064111 (2017)]

Projected bi-variational CCSD with NNLO_{opt} in ²⁰Ne

Inclusion of three-body forces

- The normal ordered 2-body approximation breaks rotational symmetry when normal-ordered with respect to a broken symmetry reference state
- Perform spherical Hartree-Fock with fractional filling to normal-order three-nucleon force
- Use normal-ordered Hamiltonian in the 2-body approximation in a second Hartree-Fock calculation of deformed nuclei

$$\begin{split} \bar{h}^{(0)}[\rho] &\equiv \frac{1}{3!} w^{(3)} \cdot \rho^{\otimes(3)} \,, \\ \bar{h}^{(1)}[\rho] &\equiv t^{(1)} - \frac{1}{2!} w^{(3)} \cdot \rho^{\otimes(2)} \,, \\ \bar{h}^{(2)}[\rho] &\equiv v^{(2)} + w^{(3)} \cdot \rho \,, \end{split}$$

Mikael Frosini et al, Eur. Phys. J. A 57 (2021)

Neon isotopes: Inclusion of three-body forces and more accurate left state

Rotational structure of neutron-rich neon isotopes in good agreement with data

Interaction 1.8/2.0(EM) from Hebeler et al (2012) over-emphasizes *N=20* shell closure ^{32,34}Ne are as rotational as ³⁴Mg

PRELIMINARY

Why do some interaction models "work" better than others?

To answer this we need predictions with rigorous **uncertainty quantification** and **sensitivity analyses** that are grounded in the description of the underlying nuclear Hamiltonian

Global sensitivity analysis

<u>Sensitivity analysis</u> addresses the question 'How much does each model parameter contribute to the uncertainty in the prediction?'

<u>Global</u> methods deal with the uncertainties of the outputs due to input variations over the whole domain.

Computational bottleneck

A global sensitivity analyses of properties of atomic nuclei typically would require more than one million model evaluations

- Eigenvector continuation method [Frame D. et al., Phys. Rev. Lett. 121, 032501 (2018), S. König et al Phys. Lett. B 810 (2020) 135814]
- Write the Hamiltonian in a linearized form

$$H(\vec{\alpha}) = \sum_{i=0}^{N_{\rm LECs}=16} \alpha_i h_i$$

- Select "training points" where we solve the exact problem
- Project a target Hamiltonian onto subspace of training vectors and diagonalize the generalized eigenvalue problem

$$\mathbf{H}(\vec{\alpha}_{\odot}) \ \vec{c} = E(\vec{\alpha}_{\odot}) \ \mathbf{N} \ \vec{c}_{:}$$

Sub-space projected coupled-cluster – cross validation in 16 dimensions

- Select 64 and 128 sub-space vectors in the 16 dimensional space of LECs using a space-filling latin hypercube design
- Select 200 randomly exact CCSD calculations in a 20% domain around NNLO_{sat}
- With 64 subspace vectors we achieve a 1% accuracy relative to exact CCSD solutions

SPCC with triples excitations

SPCC with triples excitations

SPCC for excited states

SPCC for excited states

Do chiral Hamiltonians predict a bound ²⁸O?

Ekström, Forssén, Hagen, Jiang, Papenbrock, Sun, Vernon

Prediction for 28-O shown as probability distribution where solid lines indicate the 68% and 90% probability density regions

We claim with 98% certainty that 28-O is unbound

- Used history matching and emulators and performed 10⁸ predictions for ground- and excited states of nuclei up to 24-0
- Sample the parameter posterior using MCMC
- We update the parameter posterior with information from oxygen-25 and subsequently draw 121 parameter samples used in our prediction of oxygen-27/28
- Oxygen-28 prediction is sensitive to small changes in the parameters
- It turns out the weighting on ²⁵O has little impact on rotational structure in neon isotopes

Also see Christian Forssen's talk

Rotational structure of neon isotopes with chiral interactions at NNLO

- Posterior predictive distributions for the 2+ and 4+ states in neon
- Spectra generally too compressed
- Rotational structure of ³²Ne in good agreement with data
- We predict that ³⁴Ne is as rotational as ³²Ne and ³⁴Mg

Rotational structure of neon isotopes with chiral interactions at NNLO

- Posterior predictive distributions for the 2+ and 4+ states in neon
- Spectra generally too compressed
- Rotational structure of ³²Ne in good agreement with data
- We predict that ³⁴Ne is as rotational as ³²Ne and ³⁴Mg

What drives deformation in ³²Ne?

What drives deformation in ³²Ne?

Non-implausible samples from ²⁸O study weighted on 2+ and 4+ state in ²⁴Ne

Joint posterior predictive distributions. Solid lines indicate the 68% and 90% probability density regions

Linking deformation to microscopic nuclear forces using emulators

- Eigenvector continuation method [Frame D. et al., Phys. Rev. Lett. 121, 032501 (2018), S. König et al Phys. Lett. B 810 (2020) 135814]
- Write the Hamiltonian in a linearized form

$$H(\vec{\alpha}) = h_0 + \sum_{i=1}^{N_{\rm LECs}=17} \alpha_i h_i$$

- Select "training points" where we solve exact problem
- Project a target Hamiltonian onto subspace of training vectors and diagonalize the generalized eigenvalue problem

$$\mathbf{H}(\vec{\alpha}_{\odot}) \, \vec{c} = E(\vec{\alpha}_{\odot}) \, \mathbf{N} \, \vec{c}_{\odot}$$

Linking deformation to nuclear forces

- Constructed accurate and efficient emulator of projected HF using 68 training vectors
- Training points obtained by using Latin Hypercube sampling within 20% of original low-energy constants

Linking deformation to nuclear forces

Linking deformation to nuclear forces

M1 transition in ⁴⁸Ca

- Large $B(M1: 0^+ \rightarrow 1^+)$ due to strong $\nu 1f_{7/2} \rightarrow \nu 1f_{5/2}$ excitation
- Darmstadt results are consistent with strong quenching factor (0.75) for the isovector strength
- Similarity of 1B operators in spinflip M1 and GT transitions has been used as explanation for strong quenching. We test this by explicitly including 2B operators.

Figure adapted from PRC 93, 041302(R) (2016)

M1 moments in calcium

M1 transition in ⁴⁸Ca LO $\boldsymbol{\mu}_{\text{NLO}}(k) = -\frac{i}{2} \nabla_{q} \times \mathbf{J}_{1\pi}(q,k) |_{q=0} + \frac{i}{2} e(\boldsymbol{\tau}_{1} \times \boldsymbol{\tau}_{2})_{z} \mathbf{R} \times \nabla_{k} V_{1\pi}(k)$ (a) "Sachs" "Intrinsic" NLO (b) Sachs operator gives dominant 10 contribution $\rightarrow 1^+) \left[\mu_N^2\right]$ Instead of quenching, 2B currents actually enhance B(M1), consistent with I. S. Towner, Phys. Rep. 155 (1987) 263 $B(M1:0^+$ 6 $E_{\rm r} = 10.756 \,{\rm MeV}$ $E_x = 10.23 \,\mathrm{MeV}$ $E_x = 10.23 \,\mathrm{MeV}$ $E_x = 9.948 \, {\rm MeV}$ $B(M1) = 7.914 \,\mu_N^2$ $B(M1) = 3.9 \pm 0.3 \,\mu_{\scriptscriptstyle N}^2$ $B(M1) = 9.4 \mu_{N}^{2}$ $B(M1) = 6.8 \pm 0.5 \,\mu_N^2$ 3 - "HI95 (2011) IMSRG (1B+2B) Darmstadt (1983) CCSDT3 (1B+2B) ccsD [1B] CCSDT3 [1B] 0^{+} **IMSRG** Darmstadt (1983) HIgS (2011)

Summary

- Projection after variation coupled-cluster theory with improved left state and three-nucleon forces yield accurate descriptions of rotational structure of neon isotopes: ³⁴Ne as rotational as ³²Ne and ³⁴Mg
- Using history matching, Bayesian methods and emulators predict 28-O to be unbound with 98% certainty
- Developed accurate emulators of symmetry projected Hartree-Fock which opens a way to link nuclear deformation to underlying microscopic nuclear forces
- Deformation in neutron rich neon isotopes is correlated with the amount of attraction in the ¹S₀ partial wave
- This picture was found to be consistent with a global sensitivity analysis of the R42 ratio on the low-energy constants of Delta-full NNLO interaction

Thank you for your attention!