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Outline

 Emulators: general discussions, applications, and eigenstate
emulators

* Continuum state emulators based on real energies: two and
three-body systems

* Continuum state emulations in the complex energy plane: two
and three-body systems

* Summary



Emulators and their applications

Emulator (surrogate model) enables fast and accurate
interpolation and extrapolation of model outputs in the
input parameter space
 Model calibrations and error propagation (in Bayesian
statistics)
* Chiral (e.g., three-body) interactions to exp. data
(e.g., N — d scattering)
* Error propagations for many-body calculations

Parameter space (0)

0,

* New calculations
* Extrapolations from feasible calculations—> infeasible
regions
e Calibrating macroscopic (cluster) theories against
microscopic calculations: Luscher-type approach



“Eigenvector continuation with subspace learning”
Dillon Frame et. al., Phys.Rev.Lett. 121 (2018) 3, 032501, 1711.07090

Emulators

* Reduced basis method (RBM); also known Machine learning (ML): Gaussian

as eigenvector continuation (EC) in nuclear process and neural networks
physics * nonintrusive
* Intrusive * agnostic of physics and requires
* but includes more physics, requires less more training data

training data, and has better extrapolation

“BUQEYE Guide to Projection-Based Emulators in Nuclear Physics,” C. Drischler, J.A. Melendez, R.J. Furnstahl, A.J. Garcia, and
XZ,2212.04912

“Training and projecting: A reduced basis method emulator for many-body physics,” Edgard Bonilla, Pablo Giuliani, Kyle
Godbey, Dean Lee, Phys.Rev.C 106 (2022) 5, 054322, 2203.05284

“Model reduction methods for nuclear emulators, ” J.A. Melendez, C. Drischler, R.J. Furnstahl, A.J. Garcia, XZ, 2203. 05528



https://arxiv.org/abs/2212.04912
https://arxiv.org/abs/2203.05284
https://arxiv.org/abs/2203.05528
https://arxiv.org/abs/1711.07090
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RBM emulators for nuclear structure:
eigen systems of parametrized quantum
Hamiltonians H(0)

Parameter space (0)

) = Y il (60)

. L Constructing a reduced-order model for bound states
High-fidelity system

Offline stage Online stage
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CPU time scales with the length of C_
“BUQEYE Guide to Projection-Based Emulators in Nuclear Physics,”
C. Drischler, J.A. Melendez, R.J. Furnstahl, A.J. Garcia, and XZ, 2212.04912
Konig et. Al., (2019); Ekstrom et.al., (2019); Yoshida (2021, 2023); Baran et.a., (2023) Franzke et.al. (2021,
6

2023)



https://arxiv.org/abs/2212.04912

A toy-model: emulator comparisons
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Drischler, J.A. Melendez, R.J. Furnstahl, A.J. Garcia, and XZ, 2212.04912



https://arxiv.org/abs/2212.04912

RBM emulators for nuclear continuum states

|[E — H(@)]||y(0@)) =0 foragiven E

“Efficient emulators for scattering using eigenvector
continuation,”’R. J. Furnstahl, A. J. Garcia, P. J. Millican, and XZ,
PLB 809, 135719 (2020) [2007.03635]

 Developed RBM emulator for two-body scatterings
based on variational principle for scattering

e Systems with and without Coulomb interaction

e Complex optical potential

* General partial waves (or without pw decomp.)

 Need to deal with Kohn anomalous singularities

D. Bai & Z. Ren (2021); C. Drischler, et. al., (2021); J.A. Melende et.al., (2021); D. Bai (2022)...
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https://arxiv.org/abs/2007.03635
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Tests of the emulators:

NN scattering
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n — p coupled-channel

More complexities

3

“Wave function-based emulation for nucleon-nucleon
scattering in momentum space,” A.J. Garcia, C.
Drischler, R.J. Furnstahl, J.A. Melendez, XZ (2301.05093)

“Fast emulation of quantum
three-body scattering”,
XZ and R.J. Furnstahl, Phys.
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Emulating continuum states in
energy’s complex plane
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Emulation in E-complex plane: two-body in s-wave
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Emulation in E-complex plane: two-body in s-wave
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10 training points in 4-dim space: E;,,, Re(E), Im(E), potential strength



Emulation in E-complex plane: two-body in p-wave

 Emulation = fast identifications of bound
state and resonances

* The poles correspond to the complex
eigenvalues of a complex symmetrical H (full

logipg(relative error) for Thongom €mulation
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00SoN scattering

| calculations:

— phase shift

— Inelasticity
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Three-boson scattering
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Collaborating with Bijaya Acharya and Alex Gnech (also experimenting
with BIGSTICK, thanks to Calvin Johnson) to generalize it to many-body
continuum physics

17



Comparisons to previous works

 Complex-E calculations have been performed before in few-body
(scattering) and many-body (e.g., response function) calculations

* There are different methods for transferring the complex-E results to
the real-energy region

* extrapolation based on Pade approximations: started by
Schlessinger&Schwartz 1966 (and their later works), and in nuclear physics by
Kamada, Glockle, et. al. since 2003, later by Deltuva et. al.

» Regression-based, such as in Lorentz integral transformation (Efros et. al. JPG:
Nucl. Part. Phys. 34 R459, 2007, many works by Bacca et. al.)

 Complex- E emulation provides a different E-extrapolation, in
addition to emulating interaction parameters



Ssummary

* Projection-based emulators enable efficient interpolation and extrapolation
for theory outputs in the input parameter space

* They are useful for model calibration and error propagation (in Bayesian statistics)
* They can enable new calculations

* Real- E continuum-state emulators start progressing to realistic calculations

* Complex- E emulators provide a 2"9 option; they enable continuum-state
calculations based on bound-state calculation methods, efficient identification
of resonances, and fast interaction parameter space exploration

* Next steps: their implementations in N — d (simulation) data analysis; many-
body continuum state calculations and emulations

Stay tuned! .
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Emulators for calibrating few-body models to
simulations

INT Program on Nuclear Physics for Precision Nuclear Physics
(April 19 to May 7, 2021).

8 Few-Body Emulators Based on Eigenvector Continuation
by Christian Drischler, Xilin Zhang

In this contribution we briefly recapitulate the progress made in constructing fast and accurate emulators for
few-body scattering and reaction observables based on eigenvector continuation.”? Emulators have been game
changers and we envision them to play a key role in future workflows in nuclear physics and beyond. They
have the potential to push the frontier of precision nuclear physics even further by enabling full Bayesian
analyses of nuclear structure, scattering, and reaction observables, as well as by facilitating constraints for
chiral interactions from (lattice) quantum chromodynamics (QCD). The future will show what other exciting

applications are within reach.

3/1/2023 21



Emulators for calibrating models to simulations

PHYSICAL REVIEW D 105, 074508 (2022)

Finite-volume pionless_effective field theory for few-nucleon systems
with differentiable programming arXiv: 2202.03530

Xiangkar Sun, William Detmold, D1 Luo, and Phiala E. Shanahan
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(b) Generalized eigenvalue problem (GEVP) block.


https://arxiv.org/abs/2202.03530

Emulators for calibrating models to simulations

Continuum Emulators
need to solve

2, 3, and 5-
body systems
® e
Trap them in external potential % o
within microscopic calculations Bound State o0 .

Constrain EFT (or model on ;) = compute

continuum states XZ, PRC 101, 051602(R) (2020) [arXiv:1905.05275]
XZ et.al., PRL 125, 112503 (2020) [2004.13575]
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Im(E) (MeV)

Emulation in E-complex plane: two-body in p-wave
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