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§ 1. Introduction

Background

m \We succeeded In generating multi-charged
Ar ions effectively by Dual-ECR heating.

m Dual-ECR heating means
we introduced microwaves
from both the upstream side (Coaxial)
and the downstream side (Rod).

Objectives

m \We obtained the relationship between net microwave powers
and the beam currents of multi-charged Ar ions
by Rod, Coaxial, and Dual-ECR methods.

m \We measured the beam currents and plasma parameters
such as electron density (n,) and electron temperature (T,),
and we obtained their spatial distributions by each method.
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§ 4. Experimental Results , __<Rod>
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§ 3. Theoretical Background

§ 3.1 w-k diagram and cutoff (only electron)

R-wave : k% = (9)2 {1 S }

§ 5. Discussion
Q. Why was n, at Dual-ECR heating highest?
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4 In the electromagnetic waves, there exist right-hand polarization wave < ia]> 0 l 1 1 1 . .
(Case <Coaxial>)

(R-wave) and left-hand polarization wave (L-wave) and two cutoffs (wg, wy).
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§ 3.2 Plasma parameters derivation

1 kgd(Inl,)
T, ¢ dv,

4 Plasma parameters were derived
by Langmuir probe methods.
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(M: ion mass, S: surface area of probe)

Figure 5: Langmuir probe methods.
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» 4 n. at Dual-ECR heating was highest in three ways.

Figure 7: The distribution of plasma parameters at high microwave power
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Figure 8: The dependency of Ar3* beam currents on microwave powers.

We found: 49 Rod: Ar8* increased around 120 W and decreased after that.
€ Coaxial: Ar8* increased but the value was lowest.

(1) 4 Dual: Ar8* increased and didn’t go lower.
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Figure 9: The distribution of plasma parameters at low microwave powers.
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Figure 11: The w-k diagrams and R-wave cutoff (ny = 1.0 x 1017 [/m3]).

§ 6. Conclusion
B Ar8* beam currents of Rod, Coaxial, and Dual:

4 Ar8* beam currents at Dual-ECR heating was highest
In three ways of introducing microwaves.
4 There was an instability at Rod and the values were low at Coaxial.

-

We can generate multi-charged Ar ions stably by Dual-ECR heating.

B Plasma parameters of Rod, Coaxial, and Dual:
n.. highest at Dual-ECR heating
T.: higher at the microwave introducing side

B From Discussion...
It Is reasonable that n, at Dual-ECR heating
was highest in three ways.
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