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Figure 9: Cumulative emittance distribution function F vs. emittance &.
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* There is another method to calculate root mean square emittance. This
method uses the formula &5 = [x2 x xx') . It can be calculated by : .
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Table 1: Comparison of Results Using Two Methods * The gas mixing effect was confirmed by measuring CSDs of Ar plasmas for ' _ _ _
' _ : pure Ar and Ar/He mixing. Moreover, this effect was confirmed with good * We will measure reot mean square emittances of higher charg'eel Ar 1on
_ reproducibility. beams. And, we will compare those for pure Ar and Ar/He mixing.
Ar?"beam (pure Ar) Erms = 297 mmmrad & = 95.1 mm mrad + The root mean square emittance of Ar2* beam for Ar/He mixing was about « We V.Vﬂl try to fur.ther enhance the efficiency of the production of |
multicharged Ar 1ons by introducing low frequency electromagnetic waves

Ar?* beam (Ar/He mixing) &qqus = 151 mm mrad €., = 76.7 mm mrad half of that for pure Ar.
* The results using method 1 and 2 were different. However, rms emittance * Electron densities and temperatures of Ar plasmas were almost the same for ICR heating.
decreased when He was mixed m both analytical methods. between pure Ar and Ar/He mixing.



