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Why compact neutron generator

After Fukushima incident, almost no plan to build a new research nuclear reactor.

However, neutron’s demand is increasing for nondestructive analysis and medical field.
-civil constructions (bridge, tunnel, building,,)
-metal manufacturing
-border protection (cargo inspection)
-mine sweeper
-investigations for airplane and train parts (residual stress analysis)
-boron neutron capture therapy (BNCT)
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Background

« Kinematic focusing of neutron is very effective for a compact generator.
-use lithium beam instead of proton beam

« BNL has developed high current highly charged ion source.
-direct plasma injection scheme (DPIS) ,
comparable peak current to proton accelerators
-laser ion source has provided stable beams for more than 9 years

« By combining kinematic focusing and laser ion source,
a novel compact neutron generator can be realized.
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Why lithium beam?

Neutron yield and driver beam energy
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Fig. 1. The thick target neutron yield as a function of bombarding ion energy for various low energy nuclear reactions [1].

Yubin Zuo et al. / Physics Procedia 60 (2014) 220 — 227
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Neutron production with proton beam
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Isotropic neutron production

» These reactions are endothermic and undesired radiations could be reduced if beam energy is
near the thresholds.

* However, since the proton is lighter than target atoms, the neutrons are produced almost
isotoropically and only small fraction can be used

» Therefore, higher beam energy is used to increase neutron flux. (causing undesired radiations)
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Neutron source with heavy ion driver
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« When heavy ions are delivered, neutrons are directed to forward because
of the high gravity center velocity.

» Neutron flux can be increased while beam energy is kept near the
threshold.
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Nuclear Instruments and Methods in Physics Research A 735 (2014) 145-151

Contents lists available at ScienceDirect
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Development of a kinematically focused neutron source

with the p(’Li,n)’Be inverse reaction
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* Advantage

The kinematic focusing technique clearly offers some distinct
advantages over standard isotropic quasi-monoenergetic sources:

1. The focusing enhances the available neutron flux by a factor of
between 25 and 100.

2. The lack of neutron emission at most angles results in much
lower fast and thermal scattered neutron backgrounds in the
experimental hall.

+ Disadvantage

available beam current of “Li is much lower than that available for
protons in the non-inverse reaction, because of the relative
difficulty of extraction of ’Li-ions from the ion source. Secondly,
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3.1. Target heat evacuation

For conventional, isotropic neutron sources using the non-inverse
reaction solid targets are usually thermally coupled to the beam stop
and many tens of Watts of power must be evacuated. Target cooling
with a flow of air or water is essential. However, in inverse
kinematics the “Li beams have very much reduced power (factor of
100) so the amount of heat to be evacuated from the target 1S
Signimcantly decreased. Therefore, a thermal coupling between target
and beam stop is no longer required. With a thermally decoupled
target only a few tens of milliwatts will be deposited and thus
radiative cooling will be sufficient without large rises in target
temperature. For example, 100 nA of “Li on 4.4 pm of polypropylene
or 1-3 pm of TiH; leads to a deposited power of 16 mW. The most
pessimistic assumption is that the target undergoes a radiative
cooling process only. In that case, the temperature depends only on
the material emissivity and the temperature at thermal equilibrium
can then be calculated. Considering an environment with an ambient
temperature of 293 K, for both targets the equilibrium temperature is
around 5 degrees higher at 298 K. This value is small compared to the
melting point of the target and thus heat generation in the target is
not a major problem and a cooling system is not required.
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Fig. 1. Kinematic curves relating the angle of neutron emission to neutron energy

in the laboratory frame for different ’Li bombarding energies from 13.15 to
16.5 MeV, calculated using two-body relativistic kinematics.
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Fig. 2. The top panel shows the enhancement factor of the neutron flux between
the inverse kinematic and the direct kinematic reaction as a function of Li
bombarding energy. The bottom panel shows the p(’Li,’Be)n reaction cross-section
over the same energy range.



BNL has a long experience for providing stable beams from a laser ion source.

Laser lon Source development at BNL

Laser for RHIC
Nd:YAG laser (1064 nm, 200~500 mJ/6ns)

[Target for RHIC (Rotary or small XY) |

Laser for NSRL

ww ovle

3m-long-solenoid
(few ~ 120 gauss)

|Target for NSRL (XY target) |
* The first beam in 2014 (since then no major maintenances on beam extractors)
« Pressure < 10 Pa
» Species switching within a few second, more than 20 species.
* No coupling between beam for RHIC and NSRL

* National Laboratory
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Advantages of laser ion source (LIS)

Plasma formed Plasma expands

Drift length traction field

~ a few ns ~Us ]
Scheme of laser ion source

High density plasma created from a solid.
Fast switching target materials.

Low temperature after adiabatic expansion.
Uniform density of beams.



Solenoid plasma guide plus DPIS
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Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally
demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy
ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field

0 4 8 12
(90mT, 1m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 us which was §
4.4 times longer than the width from a conventional LIS. The particle number of carbon ions Time (us)
accelerated by a radio frequency quadrupole linear accelerator was 1.2 x 10'!, which was provided by " . . . o
a single 1J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next genera- FIG. 5. C** beam with and without solenoid under the same laser irradiation
tion heavy ion accelerator. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902021] condition. “t‘e wave form without solenoid is estimated based on the plasma
measurement.
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FIG. 6. CT peak current and pulse width at FWHM as a function of solenoid
field.

FIG. 3. Setup for ion acceleration by RFQ.

We have demonstrated that 1.2x10"" of C** can be provided by a single laser shot.
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New electrodes were designed

To demonstrate acceleration of high current lithium beam, we developed RFQ electrodes.
It was predicted that the RFQ accelerates 40 mA of 7Li3* beam.

Basic parameters of RFQ

Parameter Value
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Structure 4 Rod
Frequency 100 MHz i
Input energy 22 keV/n B
Output energy 204 keV/n B T
Input beam current 50 mA
Transmission 80 % _.
RFQ length 1977 mm
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RFQ ready for Li beam

National Laboratory
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Analyzing beam line with the RFQ
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Li target fabrication

* Glove bag filled with Ar was used. Li in pouch was pressed to have flat
» Li was cut and contained in pouch without exposure to air. surface
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Li target installation

RV Y K o are o

Plastic bag with manipulation gloves was attached between flange and chamber.
Li was taken out from pouch and mounted on target stage in plastic bag.

Flange was closed and pumping started without breaking seal.

Li was not exposed to air at all during this process.
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Lithium target exposed to the air

6 min 30 min
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lons contained by laser plasma
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Contamination of target due to chemical reaction in air

LiOH and Li3N are formed on target
e Li + H,0 -> LiOH + 1/2H,
* 6Li + N, -> 2Li3N
« LisN + 3H,0 -> NH; + 3LiOH

Q/A of 7Li3*, O+, and N°®* are close

O’*, and N®* may be contained in accelerated beam
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Acceleration test setup

Li-foil
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Accelerated 7Li3+ beam (parameters from target to FC were optimized for 7Li3+)

CT — ® Laser
e * Thales
E 40 CT average —— ¢ Q5220 us,
- FC —— ®* 1.6)Jatlaser exit (~0.8 J at target)
c ® Solenoid : 15 A (790 G)
th ® Extraction voltage : 52 kV
- 20 ®* RF power :~ 100 kW
O ° Q1:8A
£ * Q2:13.2A
S * Q3:6.8A
m * Dipole:110A (2.7 kG)

® Ring bias:-400V

00 25 50 7.5 10.0
Time [us]

CT peak : 43 mA, 95 nC
FC peak : 35 mA, 74 nC
FWHM : 2.0 us
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Analyzed beam
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‘ Contamination ~ 2 %
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14 MeV lithium driver neutron generator

Next step

Design of high current IH linac

Neutron simulation based of realistic beam parameters
Design of neutron generation chamber

Estimate required shielding

Li beam energy 14-15 MeV
Beam pulse width 2 us
Repetition rate 1000 Hz

Peak ion beam current 35mA
Average ion beam current 70 uA
Neutron energy 1 MeV -5 MeV

Average neutron flux

7x109 n/s/sr
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Recent study 1: New controlled plasma extraction nozzle

Taper nozzle electrode
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Recent study 2: New Radial Matching Section of RFQ

Trying to simulate beam capture

» In DPIS, DC extraction voltage is applied between nozzle and RFQ rods.
« This is not considered in parmteq simulation.
» Shapes of nozzle and rods were optimized to maximize ion capture with IGUN and OPERA3D+GP

lteration
» IGUN simulation for plasma boundary calculation « OPERAS3D and GPT simulation for ion capture
* Axisymmetric + no RF » No plasma boundary calculation
» Parameter = Aperture and gap distance (defined emitting surface)

« Parameter: Rod diverging shape
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L=25mm,dt=100ns, | peak =1A-1.3A, 4.2 keV initial kinetic energy

~ OPERA. Formula _
Simulation condition 20 ) A t=6.67e-09 ]
GPT + OPERA/Formula \
'A‘/\/\/\/\/\/\/\/\

10 RF periods 1 O

0

X [mm]

’red 6Li1

*blue 6Li3 o 1 O —_——— N N NN\ NNV

*magenta 7Li1

*black 7Li3 . 2 0 I00% 82% 5.9% 5:] %
0 | 200 400

Particle removal start Z [mm]
at Z=77mm

Output current
L",‘ Brookhaven e 7Li3:350 mA
National Laboratory .
e Others : almost no ions accelerated




Recent study 3: Liquid lithium target for laser ion source
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Wave induced by a laser shot on melted Ga surface
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Liquid Ga was tested

Vapor deposition of Lithium was
tested

Vertical plasma diagnosis beam
line is being fabricated

Veﬂical test Iine\‘
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(a) Vacuum Argon
system system
Vacuum
chamber

Beam =) N =) Beam

Movable table

i Secondary

Containment Vessel

r

{ Nozzle

Deflector

FIG. 1. Schematic of liquid lithium charge stripper system and
lithium film. (a) Schematic illustration of the LLCS system, area
indicated by red-dot line with more details shown in (b) and (c).
(b) Photograph of the liquid lithium film formed in the LLCS
vacuum chamber. The extremely smooth surface of the lithium
film appeared as a mirror. (c) Illustration of the liquid lithium film
with labels for clarity.

PHYSICAL REVIEW LETTERS 128, 212301 (2022)

FRIB established lithium curtain system

This device could be used as a laser target as it is.

k}‘ Brookhaven

National Laboratory




Summary

Neutron generator based on intense lithium beam driver was proposed as a
clean compact source.

RFQ linac was designed and tested with Li3* ions.

« 35 mA (peak) beam was accelerated
« Almost no contamination

Feasibility of lithium driven neutron generator was verified.

A higher beam current is achievable by studying plasma injection region.

Design work of an IH-linac and Neutron generation target are started.
Collaboration for BNCT with ANSTO, Wollongong University, Tokyo Medical Dental University and Columbia University.

FRIB type lithium curtain could be used as a lithium laser target.
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