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What is this talk about?

The main emphasis is to give you a short and pedestrian
introduction to the whys and hows we can use (with several
examples) machine learning methods in nuclear physics. And why
this could (or should) be of interest.

Additional info
These slides are at https://mhjensenseminars.github.io/
MachineLearningTalk/doc/web/overview.html. Scroll down
the page.
▶ Parts of this talk are based on Artificial Intelligence and

Machine Learning in Nuclear Physics, Amber Boehnlein et al.,
Reviews Modern of Physics 94, 031003 (2022)

https://mhjensenseminars.github.io/MachineLearningTalk/doc/web/overview.html
https://mhjensenseminars.github.io/MachineLearningTalk/doc/web/overview.html
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
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A simple perspective on the interface between ML and
Physics
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AI/ML and some statements you may have heard (and what
do they mean?)

1. Fei-Fei Li on ImageNet: map out the entire world of
objects (The data that transformed AI research)

2. Russell and Norvig in their popular textbook: relevant to any
intellectual task; it is truly a universal field (Artificial
Intelligence, A modern approach)

3. Woody Bledsoe puts it more bluntly: in the long run, AI is
the only science (quoted in Pamilla McCorduck, Machines
who think)

If you wish to have a critical read on AI/ML from a societal point
of view, see Kate Crawford’s recent text Atlas of AI
Here: with AI/ML we intend a collection of machine learning
methods with an emphasis on statistical learning and data
analysis

https://cacm.acm.org/news/219702-the-data-that-transformed-ai-research-and-possibly-the-world/fulltext
http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
https://www.pamelamccorduck.com/machines-who-think
https://www.pamelamccorduck.com/machines-who-think
https://www.katecrawford.net/


Scientific Machine Learning

An important and emerging field is what has been dubbed as
scientific ML, see the article by Deiana et al Applications and
Techniques for Fast Machine Learning in Science, arXiv:2110.13041

The authors discuss applications and techniques for fast machine
learning (ML) in science – the concept of integrating power ML
methods into the real-time experimental data processing loop to
accelerate scientific discovery. The report covers three main areas

1. applications for fast ML across a number of scientific domains;
2. techniques for training and implementing performant and

resource-efficient ML algorithms;
3. and computing architectures, platforms, and technologies for

deploying these algorithms.

https://arxiv.org/abs/2110.13041
https://arxiv.org/abs/2110.13041


Machine Learning and Physics

Machine learning is an extremely rich field, in spite of its young
age. The increases we have seen during the last three decades in
computational capabilities have been followed by developments of
methods and techniques for analyzing and handling large date sets,
relying heavily on statistics, computer science and mathematics.
The field is rather new and developing rapidly.
Popular software packages written in Python for ML are
▶ Scikit-learn,
▶ Tensorflow,
▶ PyTorch
▶ Keras,

and more. These are all freely available at their respective GitHub
sites. They encompass communities of developers in the thousands
or more. And the number of code developers and contributors
keeps increasing.

http://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pytorch.org/
https://keras.io/


Lots of room for creativity

Not all the algorithms and methods can be given a rigorous
mathematical justification, opening up thereby for experimenting
and trial and error and thereby exciting new developments.

A solid command of linear algebra, multivariate theory, probability
theory, statistical data analysis, optimization algorithms,
understanding errors and Monte Carlo methods is important in
order to understand many of the various algorithms and methods.
Job market, a personal statement: A familiarity with ML is
almost becoming a prerequisite for many of the most exciting
employment opportunities. And add quantum computing and there
you are!

https://www.analyticsindiamag.com/top-countries-hiring-most-number-of-artificial-intelligence-machine-learning-experts/
https://www.analyticsindiamag.com/top-countries-hiring-most-number-of-artificial-intelligence-machine-learning-experts/
https://www.analyticsindiamag.com/top-countries-hiring-most-number-of-artificial-intelligence-machine-learning-experts/


Types of machine learning

The approaches to machine learning are many, but are often split
into two main categories. In supervised learning we know the
answer to a problem, and let the computer deduce the logic behind
it. On the other hand, unsupervised learning is a method for finding
patterns and relationship in data sets without any prior knowledge
of the system. Some authours also operate with a third category,
namely reinforcement learning. This is a paradigm of learning
inspired by behavioural psychology, where learning is achieved by
trial-and-error, solely from rewards and punishment.



Main categories

Another way to categorize machine learning tasks is to consider the
desired output of a system. Some of the most common tasks are:
▶ Classification: Outputs are divided into two or more classes.

The goal is to produce a model that assigns inputs into one of
these classes. An example is to identify digits based on
pictures of hand-written ones. Classification is typically
supervised learning.

▶ Regression: Finding a functional relationship between an input
data set and a reference data set. The goal is to construct a
function that maps input data to continuous output values.

▶ Clustering: Data are divided into groups with certain common
traits, without knowing the different groups beforehand. It is
thus a form of unsupervised learning.



Machine learning and nuclear theory (my bias): Why?
1. ML tools can help us to speed up the scientific process cycle

and hence facilitate discoveries
2. Enabling fast emulation for big simulations
3. Revealing the information content of measured observables

w.r.t. theory
4. Identifying crucial experimental data for better constraining

theory
5. Providing meaningful input to applications and planned

measurements
6. ML tools can help us to reveal the structure of our models
7. Parameter estimation with heterogeneous/multi-scale datasets
8. Model reduction
9. ML tools can help us to provide predictive capability

10. Theoretical results often involve ultraviolet and infrared
extrapolations due to Hilbert-space truncations

11. Uncertainty quantification essential
12. Theoretical models are often applied to entirely new nuclear

systems and conditions that are not accessible to experiment



The plethora of machine learning algorithms/methods

1. Deep learning: Neural Networks (NN), Convolutional NN,
Recurrent NN, Boltzmann machines, autoencoders and
variational autoencoders and generative adversarial networks

2. Bayesian statistics and Bayesian Machine Learning, Bayesian
experimental design, Bayesian Regression models, Bayesian
neural networks, Gaussian processes and much more

3. Dimensionality reduction (Principal component analysis),
Clustering Methods and more

4. Ensemble Methods, Random forests, bagging and voting
methods, gradient boosting approaches

5. Linear and logistic regression, Kernel methods, support vector
machines and more

6. Reinforcement Learning
7. Generative models and more



Examples of Machine Learning methods and applications in
nuclear physics

▶ Machine learning for data mining: Oftentimes, it is
necessary to be able to accurately calculate observables that
have not been measured, to supplement the existing databases.

▶ Nuclear density functional theory: Energy density
functional calibration involving Bayesian optimization and ML.

▶ Nuclear properties with ML: Improving predictive power of
nuclear models by emulating model residuals.

▶ Effective field theory and A-body systems: Truncation
errors and low-energy coupling constant calibration,
nucleon-nucleon scattering calculations, variational calculations
with ANN for light nuclei, NN extrapolation of nuclear
structure observables

▶ Nuclear shell model UQ: ML methods have been used to
provide UQ of configuration interaction calculations.



Examples of Machine Learning methods and applications in
nuclear physics, continues

▶ Low-energy nuclear reactions UQ: Bayesian optimization
studies of the nucleon-nucleus optical potential, R-matrix
analyses, and statistical spatial networks to study patterns in
nuclear reaction networks.

▶ Neutron star properties and nuclear matter equation of
state: constraining the equation of state by properties on
neutron stars and selected properties of finite nuclei

▶ Experimental design: Bayesian ML provides a framework to
maximize the success of on experiment based on the best
information available on existing data, experimental
conditions, and theoretical models.



More examples
The large amount of degrees of freedom pertain to both theory and
experiment in nuclear physics. With increasingly complicated
experiments that produce large amounts data, automated
classification of events becomes increasingly important. Here, deep
learning methods offer a plethora of interesting research avenues.

▶ Reconstruction of particle trajectories or classification of
events are typical examples where ML methods are being used.
However, since these data can often be extremely noisy, the
precision necessary for discovery in physics requires algorithmic
improvements. Research along such directions, interfacing
nuclear physics with AI/ML is expected to play a significant
role in physics discoveries related to new facilities. The
treatment of corrupted data in imaging and image processing
is also a relevant topic.

▶ Design of detectors represents an important area of
applications for ML/AI methods in nuclear physics.



And more
▶ An important application of AI/ML methods is to improve the

estimation of bias or uncertainty due to the introduction of or
lack of physical constraints in various theoretical models.

▶ In theory, we expect to use AI/ML algorithms and methods to
improve our knowledge about correlations of physical model
parameters in data for quantum many-body systems. Deep
learning methods show great promise in circumventing the
exploding dimensionalities encountered in quantum mechanical
many-body studies.

▶ Merging a frequentist approach (the standard path in ML
theory) with a Bayesian approach, has the potential to infer
better probabilitity distributions and error estimates. As an
example, methods for fast Monte-Carlo- based Bayesian
computation of nuclear density functionals show great promise
in providing a better understanding

▶ Machine Learning and Quantum Computing is a very
interesting avenue to explore.



Selected references
▶ Mehta et al. and Physics Reports (2019).
▶ Machine Learning and the Physical Sciences by Carleo et al
▶ Artificial Intelligence and Machine Learning in Nuclear Physics,

Amber Boehnlein et al., Reviews Modern of Physics 94,
031003 (2022)

▶ Dilute neutron star matter from neural-network quantum states
by Fore et al, Physical Review Research 5, 033062 (2023)

▶ Neural-network quantum states for ultra-cold Fermi gases,
Jane Kim et al, Nature Physics Communcication, submitted

▶ Message-Passing Neural Quantum States for the
Homogeneous Electron Gas, Gabriel Pescia, Jane Kim et
al. arXiv.2305.07240,

▶ Efficient solutions of fermionic systems using artificial neural
networks, Nordhagen et al, Frontiers in Physics 11, 2023

▶ Report from the A.I. For Nuclear Physics Workshop by
Bedaque et al., Eur J. Phys. A 57, (2021)

▶ Particle Data Group summary on ML methods

https://arxiv.org/abs/1803.08823
https://www.sciencedirect.com/science/article/pii/S0370157319300766?via%3Dihub
https://link.aps.org/doi/10.1103/RevModPhys.91.045002
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.031003
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://doi.org/10.48550/arXiv.2305.08831
https://doi.org/10.48550/arXiv.2305.08831
https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.3389/fphy.2023.1061580
https://doi.org/10.3389/fphy.2023.1061580
https://link.springer.com/article/10.1140/epja/s10050-020-00290-x
https://link.springer.com/article/10.1140/epja/s10050-020-00290-x
https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf


What are the basic ingredients?

Almost every problem in ML and data science starts with the same
ingredients:
▶ The dataset x (could be some observable quantity of the

system we are studying)
▶ A model which is a function of a set of parameters α that

relates to the dataset, say a likelihood function p(x|α) or just
a simple model f (α)

▶ A so-called loss/cost/risk function C(x, f (α)) which allows us
to decide how well our model represents the dataset.

We seek to minimize the function C(x, f (α)) by finding the
parameter values which minimize C. This leads to various
minimization algorithms. It may surprise many, but at the heart of
all machine learning algortihms there is an optimization problem.



Argon-46 by Solli et al., NIMA 1010, 165461 (2021)
Representations of two events from the Argon-46 experiment. Each
row is one event in two projections, where the color intensity of
each point indicates higher charge values recorded by the detector.
The bottom row illustrates a carbon event with a large fraction of
noise, while the top row shows a proton event almost free of noise.



Quantum Monte Carlo and deep learning

Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of ⟨H⟩, defined through

⟨E ⟩ =
∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian
H, that is

E0 ≤ ⟨E ⟩.

In general, the integrals involved in the calculation of various
expectation values are multi-dimensional ones. Traditional
integration methods such as the Gauss-Legendre will not be
adequate for say the computation of the energy of a many-body
system. Basic philosophy: Let a neural network find the
optimal wave function



Monte Carlo methods and Neural Networks

Machine Learning and the Deuteron by Kebble and Rios and
Variational Monte Carlo calculations of A ≤ 4 nuclei with an
artificial neural-network correlator ansatz by Adams et al.
Adams et al:

HLO = −
∑
i

∇⃗2
i

2mN
+
∑
i<j

(C1 + C2 σ⃗i · σ⃗j) e−r2ij Λ
2/4

+ D0
∑

i<j<k

∑
cyc

e−(r
2
ik+r2ij )Λ

2/4 , (1)

where mN is the mass of the nucleon, σ⃗i is the Pauli matrix acting
on nucleon i , and

∑
cyc stands for the cyclic permutation of i , j ,

and k . The low-energy constants C1 and C2 are fit to the deuteron
binding energy and to the neutron-neutron scattering length

https://www.sciencedirect.com/science/article/pii/S0370269320305463?via%3Dihub
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502


Deep learning neural networks, Variational Monte Carlo
calculations of A ≤ 4 nuclei with an artificial neural-network
correlator ansatz by Adams et al.

An appealing feature of the neural network ansatz is that it is more
general than the more conventional product of two- and three-body
spin-independent Jastrow functions

|ΨJ
V ⟩ =

∏
i<j<k

(
1 −

∑
cyc

u(rij)u(rjk)
)∏

i<j

f (rij)|Φ⟩ , (2)

which is commonly used for nuclear Hamiltonians that do not
contain tensor and spin-orbit terms. The above function is replaced
by a four-layer Neural Network.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.022502


Explicit results
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Dilute neutron star matter from neural-network quantum
states by Fore et al, Physical Review Research 5, 033062
(2023) at density ρ = 0.04 fm−3

https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062
https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062


The electron gas in three dimensions with N = 14 electrons
(Wigner-Seitz radius rs = 2 a.u.), Gabriel Pescia, Jane Kim
et al. arXiv.2305.07240,

https://doi.org/10.48550/arXiv.2305.07240
https://doi.org/10.48550/arXiv.2305.07240


Efficient solutions of fermionic systems using artificial neural
networks, Nordhagen et al, Frontiers in Physics 11, 2023

The Hamiltonian of the quantum dot is given by

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 is the many-body HO Hamiltonian, and V̂ is the
inter-electron Coulomb interactions. In dimensionless units,

V̂ =
N∑
i<j

1
rij
,

with rij =
√

r2i − r2j .
This leads to the separable Hamiltonian, with the relative motion
part given by (rij = r)

Ĥr = −∇2
r +

1
4
ω2r2 +

1
r
,

plus a standard Harmonic Oscillator problem for the center-of-mass
motion. This system has analytical solutions in two and three
dimensions (M. Taut 1993 and 1994).

https://doi.org/10.3389/fphy.2023.1061580
https://doi.org/10.3389/fphy.2023.1061580
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.48.3561


Quantum dots and Boltzmann machines, onebody densities
N = 6, ℏω = 0.1 a.u.



Onebody densities N = 30, ℏω = 1.0 a.u.



Onebody densities N = 30, ℏω = 0.1 a.u.



Folding and unfolding and response functions

A good read on folding/unfolding is An Unfolding Method for High
Energy Physics Experiments by Volker Blobel
See notebook details and examples of simple data reconstructed
with Gaussian processes.

https://arxiv.org/abs/hep-ex/0208022
https://arxiv.org/abs/hep-ex/0208022
https://github.com/adambozson/gp-unfold/blob/master/Falling%20exponential.ipynb
https://github.com/adambozson/gp-unfold/blob/master/Falling%20exponential.ipynb


Quantified limits of the nuclear landscape

Neufcourt et al., Phys. Rev. C 101, 044307 (2020) Predictions
made with eleven global mass model and Bayesian model averaging

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.044307


Observations and perspectives

▶ Need for AI/Machine Learning in nuclear physics, lots of
ongoing activities

▶ To solve many complex problems in the field and facilitate
discoveries, multidisciplinary efforts efforts are required
involving scientists in nuclear physics, statistics, computational
science, and applied math.

▶ There is a need for focused AI/ML learning efforts that will
benefit accelerator science and experimental and theoretical
programs



How can we use ML in Nuclear Science?

▶ How do we develop insights, competences, knowledge in
statistical learning that can advance our field?
▶ For example: Can we use ML to find out which correlations are

relevant and thereby diminish the dimensionality problem in
standard many-body theories?

▶ Can we use AI/ML in detector analysis, accelerator design,
analysis of experimental data and more?

▶ Can we use AL/ML to carry out reliable extrapolations by
using current experimental knowledge and current theoretical
models?

▶ Future research may have a strong focus on generative models

▶ The community needs to invest in relevant educational efforts
and training of nuclear physicists with knowledge in AI/ML

▶ Most likely tons of things we have forgotten



Possible start to raise awareness about ML in our field

▶ Make an ML challenge in nuclear physics a la Learning to
discover: the Higgs boson machine learning challenge.
Alternatively go to kaggle.com at
https://www.kaggle.com/c/higgs-boson

▶ HEP@CERN and HEP in general have made significant
impacts in the field of machine learning and AI. Something to
learn from

https://home.cern/news/news/computing/higgs-boson-machine-learning-challenge
https://home.cern/news/news/computing/higgs-boson-machine-learning-challenge
https://www.kaggle.com/c/higgs-boson


Addendum: Quantum Monte Carlo Motivation

Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of ⟨H⟩, defined through

⟨E ⟩ =
∫
dRΨ∗

T (R)H(R)ΨT (R)∫
dRΨ∗

T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian
H, that is

E0 ≤ ⟨E ⟩.

In general, the integrals involved in the calculation of various
expectation values are multi-dimensional ones. Traditional
integration methods such as the Gauss-Legendre will not be
adequate for say the computation of the energy of a many-body
system.



Quantum Monte Carlo Motivation

Basic steps
Choose a trial wave function ψT (R).

P(R,α) =
|ψT (R,α)|2∫
|ψT (R,α)|2 dR

.

This is our model, or likelihood/probability distribution function
(PDF). It depends on some variational parameters α. The
approximation to the expectation value of the Hamiltonian is now

⟨E [α]⟩ =
∫
dRΨ∗

T (R,α)H(R)ΨT (R,α)∫
dRΨ∗

T (R,α)ΨT (R,α)
.



Quantum Monte Carlo Motivation

Define a new quantity

EL(R,α) =
1

ψT (R,α)
HψT (R,α),

called the local energy, which, together with our trial PDF yields

⟨E [α]⟩ =
∫

P(R)EL(R,α)dR ≈ 1
N

N∑
i=1

EL(Ri ,α)

with N being the number of Monte Carlo samples.



The trial wave function

We want to perform a Variational Monte Carlo calculation of the
ground state of two electrons in a quantum dot well with different
oscillator energies, assuming total spin S = 0. Our trial wave
function has the following form

ψT (r1, r2) = C exp
(
−α1ω(r

2
1 + r2

2 )/2
)
exp

(
r12

(1 + α2r12)

)
, (3)

where the variables α1 and α2 represent our variational parameters.
Why does the trial function look like this? How did we get there?
This is one of our main motivations for switching to Machine
Learning.



The correlation part of the wave function
To find an ansatz for the correlated part of the wave function, it is
useful to rewrite the two-particle local energy in terms of the
relative and center-of-mass motion. Let us denote the distance
between the two electrons as r12. We omit the center-of-mass
motion since we are only interested in the case when r12 → 0. The
contribution from the center-of-mass (CoM) variable RCoM gives
only a finite contribution. We focus only on the terms that are
relevant for r12 and for three dimensions. The relevant local energy
operator becomes then (with l = 0)

lim
r12→0

EL(R) =
1

RT (r12)

(
−2

d2

dr2
ij

− 4
rij

d

drij
+

2
rij

)
RT (r12).

In order to avoid divergencies when r12 → 0 we obtain the so-called
cusp condition

dRT (r12)

dr12
=

1
2
RT (r12) r12 → 0



Resulting ansatz

The above results in

RT ∝ exp (rij/2),

for anti-parallel spins and

RT ∝ exp (rij/4),

for anti-parallel spins. This is the so-called cusp condition for the
relative motion, resulting in a minimal requirement for the
correlation part of the wave fuction. For general systems containing
more than say two electrons, we have this condition for each
electron pair ij .



Energy derivatives

To find the derivatives of the local energy expectation value as
function of the variational parameters, we can use the chain rule
and the hermiticity of the Hamiltonian.
Let us define (with the notation ⟨E [α]⟩ = ⟨EL⟩)

Ēαi =
d⟨EL⟩
dαi

,

as the derivative of the energy with respect to the variational
parameter αi We define also the derivative of the trial function
(skipping the subindex T ) as

Ψ̄i =
dΨ

dαi
.



Derivatives of the local energy
The elements of the gradient of the local energy are then (using the
chain rule and the hermiticity of the Hamiltonian)

Ēi = 2
(
⟨Ψ̄i

Ψ
EL⟩ − ⟨Ψ̄i

Ψ
⟩⟨EL⟩

)
.

From a computational point of view it means that you need to
compute the expectation values of

⟨Ψ̄i

Ψ
EL⟩,

and

⟨Ψ̄i

Ψ
⟩⟨EL⟩

These integrals are evaluted using MC intergration (with all its
possible error sources). We can then use methods like stochastic
gradient or other minimization methods to find the optimal
variational parameters (I don’t discuss this topic here, but these
methods are very important in ML).



How do we define our cost function?

We have a model, our likelihood function.
How should we define the cost function?



Meet the variance and its derivatives
Why the variance?
Suppose the trial function (our model) is the exact wave function.
The action of the hamiltionan on the wave function

HΨ = constant ×Ψ,

The integral which defines various expectation values involving
moments of the hamiltonian becomes then

⟨En⟩ = ⟨Hn⟩ =
∫
dRΨ∗(R)Hn(R)Ψ(R)∫

dRΨ∗(R)Ψ(R)
= constant×

∫
dRΨ∗(R)Ψ(R)∫
dRΨ∗(R)Ψ(R)

= constant.

This gives an important information: If I want the variance,
the exact wave function leads to zero variance! The variance
is defined as

σE = ⟨E 2⟩ − ⟨E ⟩2.

Variation is then performed by minimizing both the energy and the
variance.



The variance defines the cost function
We can then take the derivatives of

σE = ⟨E 2⟩ − ⟨E ⟩2,

with respect to the variational parameters. The derivatives of the
variance can then be used to defined the so-called Hessian matrix,
which in turn allows us to use minimization methods like Newton’s
method or standard gradient methods.
This leads to however a more complicated expression, with obvious
errors when evaluating integrals by Monte Carlo integration. Less
used, see however Filippi and Umrigar. The expression becomes
complicated

Ēij = 2
[
⟨(
Ψ̄ij

Ψ
+

Ψ̄j

Ψ

Ψ̄i

Ψ
)(EL − ⟨E ⟩)⟩ − ⟨Ψ̄i

Ψ
⟩Ēj − ⟨

Ψ̄j

Ψ
⟩Ēi

]
(4)

+ ⟨Ψ̄i

Ψ
ELj⟩+ ⟨

Ψ̄j

Ψ
ELi ⟩ − ⟨Ψ̄i

Ψ
⟩⟨ELj⟩⟨

Ψ̄j

Ψ
⟩⟨ELi ⟩.

Evaluating the cost function means having to evaluate the above
second derivative of the energy.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.150201


Why Boltzmann machines?

What is known as restricted Boltzmann Machines (RMB) have
received a lot of attention lately. One of the major reasons is that
they can be stacked layer-wise to build deep neural networks that
capture complicated statistics.
The original RBMs had just one visible layer and a hidden layer, but
recently so-called Gaussian-binary RBMs have gained quite some
popularity in imaging since they are capable of modeling continuous
data that are common to natural images.
Furthermore, they have been used to solve complicated quantum
mechanical many-particle problems or classical statistical physics
problems like the Ising and Potts classes of models.



A standard BM setup

A standard BM network is divided into a set of observable and
visible units x̂ and a set of unknown hidden units/nodes ĥ.

Additionally there can be bias nodes for the hidden and visible
layers. These biases are normally set to 1.

BMs are stackable, meaning we can train a BM which serves as
input to another BM. We can construct deep networks for learning
complex PDFs. The layers can be trained one after another, a
feature which makes them popular in deep learning
However, they are often hard to train. This leads to the
introduction of so-called restricted BMs, or RBMS. Here we take
away all lateral connections between nodes in the visible layer as
well as connections between nodes in the hidden layer. The network
is illustrated in the figure below.



The structure of the RBM network

Hidden Layer 

Visible Layer ai(vi)

bμ(hμ)

WiμvihμInteractions 



The network

The network layers:
1. A function x that represents the visible layer, a vector of M

elements (nodes). This layer represents both what the RBM
might be given as training input, and what we want it to be
able to reconstruct. This might for example be the pixels of an
image, the spin values of the Ising model, or coefficients
representing speech.

2. The function h represents the hidden, or latent, layer. A vector
of N elements (nodes). Also called "feature detectors".



Joint distribution

The restricted Boltzmann machine is described by a Boltzmann
distribution

Prbm(x, h) =
1
Z
e
− 1

T0
E(x,h)

, (5)

where Z is the normalization constant or partition function, defined
as

Z =

∫ ∫
e
− 1

T0
E(x,h)

dxdh. (6)

It is common to ignore T0 by setting it to one.



Defining different types of RBMs
There are different variants of RBMs, and the differences lie in the
types of visible and hidden units we choose as well as in the
implementation of the energy function E (x, h).

Binary-Binary RBM:
RBMs were first developed using binary units in both the visible
and hidden layer. The corresponding energy function is defined as
follows:

E (x, h) = −
M∑
i

xiai −
N∑
j

bjhj −
M,N∑
i ,j

xiwijhj , (7)

where the binary values taken on by the nodes are most commonly
0 and 1.

Gaussian-Binary RBM:
Another variant is the RBM where the visible units are Gaussian
while the hidden units remain binary:

E (x, h) =
M∑
i

(xi − ai )
2

2σ2
i

−
N∑
j

bjhj −
M,N∑
i ,j

xiwijhj
σ2
i

. (8)



Representing the wave function
The wavefunction should be a probability amplitude depending on
x . The RBM model is given by the joint distribution of x and h

Frbm(x, h) =
1
Z
e
− 1

T0
E(x,h)

. (9)

To find the marginal distribution of x we set:

Frbm(x) =
∑

h

Frbm(x, h) (10)

=
1
Z

∑
h

e−E(x,h). (11)

Now this is what we use to represent the wave function, calling it a
neural-network quantum state (NQS)

Ψ(x) = Frbm(x) (12)

=
1
Z

∑
h

e−E(x,h) (13)

=
1
Z

∑
{hj}

e−
∑M

i
(xi−ai )

2

2σ2 +
∑N

j bjhj+
∑M,N

i,j

xi wij hj

σ2 (14)

=
1
Z
e−

∑M
i

(xi−ai )
2

2σ2

N∏
j

(1 + ebj+
∑M

i

xi wij

σ2 ). (15)

(16)



Choose the cost/loss function

Now we don’t necessarily have training data (unless we generate it
by using some other method). However, what we do have is the
variational principle which allows us to obtain the ground state
wave function by minimizing the expectation value of the energy of
a trial wavefunction (corresponding to the untrained NQS).
Similarly to the traditional variational Monte Carlo method then, it
is the local energy we wish to minimize. The gradient to use for the
stochastic gradient descent procedure is

∂⟨EL⟩
∂θi

= 2(⟨EL
1
Ψ

∂Ψ

∂θi
⟩ − ⟨EL⟩⟨

1
Ψ

∂Ψ

∂θi
⟩), (17)

where the local energy is given by

EL =
1
Ψ

ĤΨ. (18)


