

### PENeLOPE

(Precision Experiment on the Neutron Lifetime Operating on Proton Extraction)

J. Dellith<sup>a</sup>, P. Fierlinger<sup>a</sup>, M. Gundel<sup>a</sup>, S. Paul<sup>a</sup>, <u>R. Picker<sup>b</sup></u>, W. Schreyer<sup>b</sup>, R. Stoepler<sup>a,</sup> D. Salazar<sup>b</sup>

<sup>a</sup>Technische Universität München, Physik Department, Germany <sup>b</sup>TRIUMF, Vancouver, BC, Canada

#### Outline:

- $\tau_n$  motivation
- PENeLOPE design
- Status







### **TRIUMF** Neutrons and the universe



## **TRIUMF** Neutrons and cosmology: nucleosynthesis

Technische Universität München

 $t < 1 \text{ s}, kT > 1.3 \text{ MeV} (15 \text{ billion } ^{\circ}\text{C})^{*}$  $t > 100 \text{ s}, kT < 0.1 \text{ MeV} (1.2 \text{ billion } ^{\circ}\text{C})$ thermal equilibrium nucleosynthesis  ${}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + p$  $d + p \rightarrow {}^{3}\text{He} + \gamma$  $d + d \rightarrow {}^{3}\text{H} + p \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$  $p + e^- \implies n + \nu$  $d + d \rightarrow {}^{3}\text{He} + n \longrightarrow {}^{7}\text{Li} + p$  $n + e^+ \implies p + \overline{\nu}$  $^{3}\text{He} + ^{4}\text{He} \rightarrow ^{7}\text{Be} + \gamma$   $^{3}\text{He} + ^{4}\text{He} \rightarrow ^{7}\text{Be} + \gamma$  $^{3}\text{He} + d \rightarrow ^{4}\text{He} + p$ 1 s < t < 100 s, 0.1 MeV < kT < 1.3 MeV н eqquilibrium 4<sub>He</sub> neutron decay neutron decay  $n \rightarrow p + e^- + \overline{\nu}$ 3<sub>He</sub>  $n_{\rm p}$ 6 3<sub>H</sub> **HCLEO** thermal og(ma <sup>7</sup>Be t > 100 s, kT < 0.1 MeV, bec. of  $\gamma/B$ deuterium fusion  $n + p \rightarrow d + \gamma$ 10 100 1000 10000 \*T in sun 6000°C at surface to 15 Mio°C in the core *t* [S]



#### **Parameters of Big Bang Nucleosynthesis**





## **%TRIUMF** Quark-mixing

Electron

Neutrino

<sup>•</sup> Quark Mixing



- Cabbibo-Kobayashi-Maskawa (CKM) Matrix:
  - Mixing between 3 generations of quarks



• From Fermi's Golden Rule:

$$|V_{ud}|^2 = \frac{10^3}{0.1897(1+3(\frac{g_A}{g_V})^2)(1+0.0739(8)))} \cdot \frac{1}{\tau_n} s$$

- Unitarity in CKM (1st row):
  - Check to see if **only** 3 generations of mixing occurs
  - 2.2σ deviation from unitarity

 $|V_{\rm ud}|^2 + |V_{\rm us}|^2 + |V_{\rm ub}|^2 = |0.97373 \pm 0.00031|^2 + |0.2243 \pm 0.0008|^2 + |(3.82 \pm 0.20) \times 10^{-3}|^2 = 0.9985 \pm 0.007$ 

- the particle data group (PDG) reviews all major particle properties annually *http://pdg.lbl.gov/*
- PDG "world" averages of the neutron lifetime for the last 60 years
- $\Rightarrow$  We're honing in, but slowly...



# **TRIUMF** Beam vs Trap Experiments



## **TRIUMF** How to store neutrons magnetically?



UCN are really cold:

 $E_{\rm kin} < 300 \ {\rm neV} \ \le T < 3 \ {\rm mK}$ 

They can be manipulated using:

- Strong interaction (Fermi potential up to 350 neV, total reflection from walls)
  UCN TRANSPORT, STORAGE
- **Gravitation** (100 neV ≜ 1.02 m)

UCN STORAGE, ENERGY MANIPULATION

Magnetic interaction (force on magnetic moment) UCN STORAGE, POLARISATION

 $\vec{F} = \nabla(\vec{\mu}_{\rm n}\vec{B})$ 

 $\mu_{\rm n} = -60.3 \, \frac{\rm neV}{\rm T}$ 

polarising magnet



SOUICE

- experiment

 $U = -\mu_{\rm n} \cdot B \approx 120 \, \text{neV for 2} \, \text{T}$ 

## **TRIUMF** History of the experiment

- idea came to TU Munich with S. Paul in 1997
- magnetic storage: create large field surrounding low field region
- different topologies were studied:
  - loffe type trap: current bars dodekapol + 2 solenoids
  - U shaped multipole
  - ca 2001: large permanent magnet trap, multipole in z-direction





### **TRIUMF** History of the experiment

- idea came to TU Munich with S. Paul in 1997
- magnetic storage: create large field surrounding low field region
- different topologies were studied:
  - loffe type trap: current bars dodekapol + 2 solenoids
  - U shaped multipole
  - ca 2001: large permanent magnet trap, multipole in z-direction





#### **PENeLOPE** principle





#### **Neutron spin flip suppression**





• adiabatic condition for neutron spin transport

$$\omega_{\text{Larmor}} \gg \frac{B}{|B|}$$

Magnet and field layout of PENeLOPE at TU Munich



#### **Neutron spin flip suppression**





adiabatic condition for neutron spin transport

$$\omega_{\text{Larmor}} \gg \frac{\dot{B}}{|B|}$$

- violated in low field regions
- $\Rightarrow$  spin flip more likely
- $\Rightarrow$  **UCN loss** from trap
- ⇒ systematic effect on lifetime measurement ⊗
- all storage coil fields are in r-z plane
- fill low field regions with central current creating azimuthal field
- Central solenoids necessary to prevent neutrons from hitting central current bars



kinetic energy of protons much less than electrons  $\Rightarrow$  electrostatic manipulation

possible

 $\Rightarrow$  detector on HV





### **∂**TRIUMF

#### **Experiment cycle**

| Experiment phase                              | Storage<br>valve | Absorber<br>height [cm] | Duration<br>[s]          |
|-----------------------------------------------|------------------|-------------------------|--------------------------|
| Fill ultracold neutrons in experiment         | open             | 70                      | 200                      |
| Spectrum cleaning                             | Closed           | 70                      | 150                      |
| Magnet ramp up                                | Closed           | 70                      | 100                      |
| High-field seeker<br>cleaning                 | Open             | 0                       | 100                      |
| Detect decay protons<br>and spin-flipped UCN? | Open             | 70                      | up to<br>several<br>1000 |
| Ramp down magnet                              | Open             | 70                      | 100                      |
| Count remaining neutrons                      | Open             | 70                      | 200                      |



## **TRIUMF** Statistical prospect for PENeLOPE at TRIUMF

- Assuming 14M UCN/s produced in the TUCAN source between 0 and 233 neV
- Connecting PENeLOPE to the full TUCAN source in PENTrack MC simulation
- Filling time: 250 s



Technische Universität München

All to be below 10<sup>-4</sup>

- Marginally trapped UCN (less than 10<sup>-4</sup>)
- Energy gain of low-field-seekers (no mechanism known)
- High-field-seekers (less than 10<sup>-4</sup>)
- Depolarized UCN ( $\tau > 10^8$  s)
- Rest gas absorption (p < 5 x 10<sup>-8</sup> mbar,  $\Delta \tau$  < 0.03 s)
- Time-dependent detector background (not critical for UCN detector)
- Detector drift (normalization and background measurements will help)
- Space charge effects (does not affect UCN measurement)

# **TRIUMF** Coil tests with partially completed magnet

- Bottom coils + 2 inner coils + 2 outer coils:
- Reached only 65% of nominal current













- Cryostat and magnet completed
- Delivered to TUM in 2020 (pandemic...)
- 2021 to 2022: cooldown attempts with marginal liquefier
- Summer 2022: liquefier at TUM died and no replacement planned
- ⇒ Cryo testing and quench training planned at TRIUMF
- $\Rightarrow$  PRIS submitted to PMOG (meeting tomorrow)
- ⇒ Meson hall liquefier and adjacent space available during shutdown 2024
- $\Rightarrow$  Very important milestone for
  - $\Rightarrow$  Funding applications
  - $\Rightarrow$  Attracting new collaborators

## **∂**TRIUMF Summary

- The neutron lifetime is a very important fundamental parameter that still has not been nailed down well enough.
- PENeLOPE is taking the next step using magnetogravitational storage in a superconducting magnet
- After long, difficult and expensive development and construction the main component (magnet and cryostat) has been completed and is ready for testing ⇒ quench training at TRIUMF and results are most important milestone
- Prospects for a competitive measurement at TRIUMF are very good.

