

Contribution ID: 155 Type: Poster

Measurements of Backward Angle Quasi-Elastic Scattering in 28 Si + 158 Gd: Sensitivity of β_2 , β_4 , and 2n Transfer

Tuesday, 20 August 2024 17:36 (1 minute)

In recent times, it is quite complex to determine various nuclear characteristics, e.g., shape, mass, quadrupole (β_2) and hexadecapole (β_4) deformations, which is the fundamental interest of contemporary research. In this context, sd-shell nuclei (20 Ne, 28 Si, 24 Mg, and 32 S) are of special interest as their deformation parameters vary in sign and magnitude with a significant uncertainty. Recently, fusion barrier distribution (FBD) via backward angle quasi-elastic (QEL) scattering has been initiated as a probe to precisely determine β_2 and β_4 parameters. In reactions where transfer channels are favourable, they can affect the extracted values of such parameters. Hence, an attempt has been made to determine the deformation parameters of 28 Si via FBD through backward angle QEL scattering.

Thus, an experiment has been performed to measure the QEL excitation functions (EFs) for 28 Si + 158 Gd system at energies around the Coulomb barrier using the Heavy-Ion Reaction Analyzer (HIRA) at IUAC, New Delhi, India. The measured QEL EFs and derived FBD have been analyzed within the coupled channel (CC) calculations framework with $\beta 2$ and $\beta 4$ parameters. Furthermore, the impact of 2n transfer on FBD has been studied. The results obtained from CC calculations with an oblate shape of 28 Si in its ground state are in good agreement with experimental data, and the extracted values and sign of $\beta 2$ and $\beta 4$ are in accordance with those of different inelastic scattering experiments. A detailed analysis and the obtained results will be presented during the conference.

Funding Agency

GSI Helmholtzzentrum für Schwerionenforschung

Email Address

R.KumarPrajapat@gsi.de

Presenter if not the submitter of this abstract

Primary author: PRAJAPAT, Rinku (Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India and GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291-Darmstadt, Germany)

Co-authors: KUMAR, Chandra (Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India); GONIKA (Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India); GEHLOT, J. (Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India); SAGWAL, Malvika

(Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India); MAITI, Moumita (Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India); MAD-HAVAN, N. (Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India); KUMAR, Rishabh (Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India); BISWAS, Rohan (Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India); NATH, S. (Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi-110067, India)

Presenter: PRAJAPAT, Rinku (Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India and GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291-Darmstadt, Germany)

Session Classification: Poster Session

Track Classification: Fusion and Fission