GANIL

Scission deformation of ¹²⁰Cd/¹³²Sn neutronless fragmentation in ²⁵²Cf(sf) FRANCHETEAU Alexis¹

¹ GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France

14th International Conference on Nucleus-Nucleus Collisions

22nd August 2024

Fission

Energy & excitation energy repartition

Fission

Energy & excitation energy repartition

K.H. Schmidt *et al*, PRL **104** (2010), data from A. Naqvi *et al*, PRC **34** (1986)

- Neutrons major conveyors of the excitation energy,
- Heavy fragment appear to get more EE than the light one.

J. Milton et al, PR 111 (1958)

Fission

Energy & excitation energy repartition

K.H. Schmidt *et al*, PRL **104** (2010), data from A. Naqvi *et al*, PRC **34** (1986)

Recent measurements of M_{γ} and $\langle J \rangle^{post}$ shed new light to the AM generation mechanism

- Neutrons major conveyors of the excitation energy,
- Heavy fragment appear to get more EE than the light one.

(Q)≈218 MeV

GANIL

FRANCHETEALLAlexis - NN2024

Neutronless fission as an access to the primary fragments

- Neutronless fission give access to the primary fragments, experimentally challenging [1,2].
- Excitation energy and angular momentum are both exhausted by the γ emission.

[1] C. Signarbieux et al, J. Physique Lettres 42 (1981) [2] H.-H. Knitter et al, Nucl. Phys. A 536 (1992)

TKE~O

Experimental Setup

- 54 Nal: Prompt spectrum measurement and isomers identification.
- Twin Frisch-Gridded Ionization Chamber:
 - Fragments identification $\overrightarrow{p_L} = \overrightarrow{p_L} \Rightarrow A_L/A_H = E_H/E_L,$
 - excellent intrinsic resolution (~ 0.3 MeV),

Experimental Setup

- 54 Nal: Prompt spectrum measurement and isomers identification.
- Twin Frisch-Gridded Ionization Chamber:
 - Fragments identification $\overrightarrow{p_L} = \overrightarrow{p_L} \Rightarrow A_L/A_H = E_H/E_L,$
 - excellent intrinsic resolution (\sim 0.3 MeV),
 - ultra-thin backing (5 µg.cm⁻²): identification of neutronless fission.

FRANCHETEAU Alexis - NN2024

Resolved masses (0.7 a.m.u.) for high TKE events: without neutron emission, $\sigma(A) = \sigma(E)$

$\times 10^{-6}$ Yield 0.3 0.25 0.2 0.15 0.1 0.05 120 130 140 A^{pre} [MeV] 100 110

22/08/24

Neutronless fission

 ¹²⁰Cd/¹³²Sn fragmentation extracted by TKE selection,

 ¹²⁰Cd/¹³²Sn fragmentation extracted by TKE selection,

 ¹²⁰Cd/¹³²Sn fragmentation extracted by TKE selection,

 ¹³²Sn observed in its ground state in at least 98% of the Cd/Sn events.

- ¹³²Sn observed in its ground state in at least 98% of the Cd/Sn events.
- Measurement of ¹²⁰Cd excitation energy distribution.

Counts/10 keV

Angular momentum is the most constraining observable to reproduce the experimental spectrum:

AM generated from collective guantum DoF and its dynamics [3],

[3] G. Scamps et al, Phys. Rev. C 108, 034616 (2023)

GANI!

- Angular momentum is the most constraining observable to reproduce the experimental spectrum:
 - AM generated from collective quantum DoF and its dynamics [3],
 - Constraint the scission deformation of 120 Cd ($\beta_2 \sim 0.4$) [4].

[3] G. Scamps *et al*, Phys. Rev. C **108**, 034616 (2023)
[4] A. Francheteau *et al*, Phys. Rev. Letters **132**, 142501 (2024)

¹¹⁸Pd/¹³⁴Te neutronless fragmentation

ExcitatioOn energy repartition

- ¹¹⁸Pd/¹³⁴Te identified in the same way,
- AM constrained by G. Scamps calculations,
- then the EE repartition between the two fragments is the key quantity to reproduce th experimental γ-spectrum,
- determined through a genetic algorithm.
- The present work validates the current understanding of the EE sharing.
- Submitted to Phys. Rev. Letters.

- First study of the γ-spectra in cold fission.
- Cold fission seen thanks to an excellent energy resolution.
- 120 Cd $/^{132}$ Sn (published in PRL):
 - ^{132}Sn measured in its ground state,
 - First measurement of the ¹²⁰Cd excitation energy,
 - Determination of its angular momentum distribution using the orientation-pumping mechanism,
 - Constrain the scission deformation of ¹²⁰Cd, different from its ground state.
- 118 Pd/ 134 Te (submitted to PRL):
 - First determination of the energy repartition with a genetic algorithm,

Collaborators

CEA, DAM, DIF, F-91297, Arpajon, France

Laurent Gaudefroy, Olivier Roig, Vincent Méot,

Laboratoire des 2 Infinis -Toulouse (L2IT-IN2P3), Université de Toulouse, CNRS, UPS, F-31062 Toulouse Cedex 9, France Guillaume Scamps

GANIL

Thank you for your attention

GANIL, Bd Becquerel, Caen France alexis.francheteau@ganil.fr