

Toward extracting scattering phase shift from integrated correlation function in lattice QCD

Peng Guo

Dakota State University

14th International Conference on NN Collisions 2024 Whistler, BC Canada Major tasks in Nuclear/Hadron physics:

Understand and extract few-body dynamics, such as scattering phase shift

Understand resonances and bound states

Major tasks in Nuclear/Hadron physics:

Understand and extract few-body dynamics, such as scattering phase shift

Understand resonances and bound states

Lattice QCD: one route to non-perturbative dynamics

Lattice QCD: one route to non-perturbative dynamics

$\begin{aligned} & \fbox{Intro QCD: one route to non-perturbative } \\ & \textit{dynamics} \\ & \langle 0 | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | 0 \rangle \propto \int \mathcal{D}[U] \mathcal{D}[\psi, \bar{\psi}] e^{-S_G[U] - S_F[\psi, \bar{\psi}, U]} \mathcal{O}(t) \mathcal{O}^{\dagger}(0) \end{aligned}$

Lattice QCD: one route to non-perturbative dynamics $\langle 0|\mathcal{O}(t)\mathcal{O}^{\dagger}(0)|0\rangle \propto \int \mathcal{D}[U]\mathcal{D}[\psi,\bar{\psi}]e^{-S_{G}[U]-S_{F}[\psi,\bar{\psi},U]}\mathcal{O}(t)\mathcal{O}^{\dagger}(0)$

 $S_G[U] + S_F[\psi, \bar{\psi}, U] \to \int d^4 x \bar{\psi}(x) [\gamma_\mu(\partial_\mu + igA_\mu(x)) + m] \psi(x) + \frac{1}{2} \int d^4 x tr[F_{\mu\nu}(x)F_{\mu\nu}(x)]$

Lattice QCD: one route to non-perturbative
dynamics

$$\langle 0|\mathcal{O}(t)\mathcal{O}^{\dagger}(0)|0\rangle \propto \int \mathcal{D}[U]\mathcal{D}[\psi,\bar{\psi}]e^{-S_G[U]-S_F[\psi,\bar{\psi},U]}\mathcal{O}(t)\mathcal{O}^{\dagger}(0)$$

 $S_G[U]+S_F[\psi,\bar{\psi},U] \rightarrow \int d^4x\bar{\psi}(x)[\gamma_{\mu}(\partial_{\mu}+igA_{\mu}(x))+m]\psi(x)+\frac{1}{2}\int d^4xtr[F_{\mu\nu}(x)F_{\mu\nu}(x)]$
 $\psi(x+nL)=\psi(x)$
 $\psi(x+nL)=\psi(x)$
 $\psi(x+nL)=\psi(x)$
 $\psi(x)$
 $\psi(x$

$\langle 0 | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | 0 \rangle$

Spectroscopy from Lattice QCD $O(t) = e^{t\hat{H}}O(0)e^{-t\hat{H}}$

 $\langle 0 | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | 0 \rangle$

J. Dudek, JLab advanced study institute

Extracting Two-body dynamics from discrete energy levels

Extracting Two-body dynamics from discrete energy levels

Lusecher formula-like QC as result of factorization of long-range effect and short-range dynamics

 $\det\left[\cot\delta(E) - \mathcal{M}(E)\right] = 0$

Extracting Two-body dynamics from discrete energy levels

Lusecher formula-like QC as result of factorization of long-range effect and short-range dynamics

 $\det\left[\cot\delta(E) - \mathcal{M}(E)\right] = 0$

HAL QCD collaboration potential method

EPJ Web of Conferences **175**, 01022 (2018) *Lattice 2017*

Two-Nucleon correlation function suffer Signal-to-noise ratio issue:

$$\mathcal{R}(t) \stackrel{t \to \infty}{\sim} e^{-(m_N - \frac{3}{2}m_\pi)t}$$

Fig. 1. Effective mass plots of the nucleon from Ref. [64] which suffer from correlated, late time fluctuations, making it more challenging to identify the ground state. The top plot is from a calculation with $a \sim 0.15$ fm and $m_{\pi} \sim 220$ MeV while the bottom is for $a \sim 0.09$ fm and $m_{\pi} \sim 310$ MeV.

Progress in Particle and Nuclear Physics 121 (2021) 103888

* Lusecher formula and HAL QCD collaboration potential method disagree on whether or not two-nucleon form a bound state with pion masses as heavy as 800 MeV

Progress in Particle and Nuclear Physics 121 (2021) 103888

* Lusecher formula face difficulties at large volume limit due to increasing density of states

* The difference of integrated correlation functions between interacting and non-interacting systems approaches rapidly to its infinite volume limit which is related to scattering phase shift

$$C(t) - C_0(t) = \sum_n \left[e^{-\epsilon_n t} - e^{-\epsilon_n^{(0)} t} \right] \stackrel{L \to \infty}{\to} \frac{t}{\pi} \int_0^\infty d\epsilon \delta(\epsilon) e^{-\epsilon t}$$

where
$$C(t) = \int_0^L dr C(rt; r0)$$

$$C(rt; r'0) = \langle 0 | T \left[\widehat{\mathcal{O}}_{H}(r, t) \widehat{\mathcal{O}}_{H}^{\dagger}(r', 0) \right] | 0 \rangle$$

Two-particle creation operator

PHYSICAL REVIEW D 108, 074504 (2023)

· e-Print: 2402.15628 [hep-lat]

Exactly solvable model with contact interaction:

$$\left[-\frac{1}{2\mu}\frac{d^2}{dr^2} + V_0 \sum_{n \in \mathbb{Z}} \delta(r + nL)\right] \psi_{\epsilon}^{(\text{rel})}(r) = \epsilon \psi_{\epsilon}^{(\text{rel})}(r)$$

FIG. 1. The energy spectra and difference of integrated correlation function plots for particles interaction in a periodic box: (a) $\delta(\epsilon_n) + \sqrt{2\mu\epsilon_n} \frac{L}{2}$ (solid black) vs $n\pi$ (dashed red) with L = 3, energy spectra are located at intersection points of black and red curves; (b) $\frac{1}{\pi} \int_0^\infty d\epsilon \frac{d\delta(\epsilon)}{d\epsilon} e^{-\epsilon\tau} - \frac{1}{2}$ (solid black) vs $C^{(\text{rel})}(t) - C_0^{(\text{rel})}(t)$ (dashed red) with L = 3, 5, 10. The rest of parameters are taken as $V_0 = 0.5$ and $\mu = 1$.

PHYSICAL REVIEW D 108, 074504 (2023)

• e-Print: 2402.15628 [hep-lat]

FIG. 1. The energy spectra and difference of integrated correlation function plots for particles interaction in a periodic box: (a) $\delta(\epsilon_n) + \sqrt{2\mu\epsilon_n} \frac{L}{2}$ (solid black) vs $n\pi$ (dashed red) with L = 3, energy spectra are located at intersection points of black and red curves; (b) $\frac{1}{\pi} \int_0^\infty d\epsilon \frac{d\delta(\epsilon)}{d\epsilon} e^{-\epsilon\tau} - \frac{1}{2}$ (solid black) vs $C^{(\text{rel})}(t) - C_0^{(\text{rel})}(t)$ (dashed red) with L = 3, 5, 10. The rest of parameters are taken as $V_0 = 0.5$ and $\mu = 1$.

PHYSICAL REVIEW D 108, 074504 (2023)

e-Print: 2402.15628 [hep-lat]

$$\left[-\frac{1}{2\mu}\frac{d^2}{dr^2}+\frac{1}{2}\mu\omega^2r^2+V(r)\right]\psi_n(r)=\epsilon_n\psi_n(r),$$

where

$$V(r) = \begin{cases} \frac{V_0}{b}, & r \in \left[-\frac{b}{2}, \frac{b}{2}\right] \\ 0, & \text{otherwise} \end{cases}, \qquad \stackrel{b \to 0}{\to} V_0 \delta(r).$$

• e-Print: 2402.15628 [hep-lat]

* Relativistic extension for complex scalar lattice field theory model

$$S_E = -\kappa \sum_{x,t,\hat{n}_x,\hat{n}_t} \hat{\phi}^*(x,t) \hat{\phi}(x+\hat{n}_x,t+\hat{n}_t) + c.c.$$

+ $(1-2\lambda) \sum_{x,t} |\hat{\phi}(x,t)|^2 + \lambda \sum_{x,t} |\hat{\phi}(x,t)|^4$

PHYSICAL REVIEW D 110, 014504 (2024)

• e-Print: 2402.15628 [hep-lat]

* Relativistic extension for complex scalar lattice field theory model

$$S_E = -\kappa \sum_{x,t,\hat{n}_x,\hat{n}_t} \hat{\phi}^*(x,t)\hat{\phi}(x+\hat{n}_x,t+\hat{n}_t) + c.c + (1-2\lambda) \sum_{x,t} |\hat{\phi}(x,t)|^2 + \lambda \sum_{x,t} |\hat{\phi}(x,t)|^4$$

U.S. National Science Foundation

Good candidate to overcome Lusecher formula method at large volume limit;

Good candidate to overcome Lusecher formula method at large volume limit;

✓Inelastic effect may be important in some cases, and need to be build in;

Good candidate to overcome Lusecher formula method at large volume limit;

✓Inelastic effect may be important in some cases, and need to be build in;

May have potential to overcome S/N problem.

