Tantalizing Structure in Long Range Correlations in High Multiplicity e^+e^- Collisions and Fourier Decomposition Using Archived ALEPH Data at 91-209 GeV

Chris McGinn on behalf of MOD

NN2024 at Whistler

19 August 2024

Motivation: From Large to Small (I)

Still via Ann.Rev.Nucl.68 (2018)

Full video via Yen-jie Lee, Wit Busza, and Andre Yoon

- 1. Lorentz-contracted nuclei inbound
- 2. Initial collision
- 3. After some formation time, Quark Gluon Plasma (QGP) hydrodynamics takes over
- 4. After some longer time, freezeout and hadronization

Motivation: From Large to Small (II)

- 1. Lorentz-contracted nuclei inbound
- 2. Initial collision
- 3. After some formation time, Quark Gluon Plasma (QGP) hydrodynamics takes over
- 4. After some longer time, freezeout and hadronization

Motivation: From Large to Small (III)

- Observable phenomena in collisions systems of all sizes!
- Possible signature of QGP droplet formation
- Alternatively, initial state correlations with no QGP
- How small can we go? Are there two-particle correlations in point-like systems?

The ALEPH Detector

- At LEP from 1989-2000
- \sqrt{s} at Z-pole until 1995
- Beyond 1995 at higher energy
 - Maxing at 209 GeV

Inner Tracking Chamber

- Collisions of e^+e^- are a clean environment for testing QCD
- Can we observe long range correlations in a point-like system?
 - Let's check archived data!

Defining Two-particle Correlations in e^+e^-

in pp/AA, coordinates defined by beam-axis but in e^+e^- the initial state annihilates...

Defining Two-particle Correlations in e^+e^-

Maximizes particle momentum projections In case of dijets, pencil-like events

Christopher McGinn

Search with LEP-I Data

- Thrust-axis search shows no increase in associated particle yield
- Limit on associated yield magnitude set for $N_{\text{trk}} \ge$ 35
 - No associated particle yields at the Z-pole!

Anthony Badea (Chicago, ATLAS)

Motivating a Search with LEP-II Data

$N_{\rm trk}$ range	Fraction of data (%)	$\langle N_{\rm trk} \rangle$	$\langle N_{\rm trk}^{\rm corr} \rangle$
[5, 10)	3.1	8.2	8.9
[10, 20)	59.2	15.2	15.8
[20, 30)	34.6	23.1	23.4
$[30,\infty)$	3.1	32.4	32.6
$[35,\infty)$	0.5	36.9	37.2

LEP-I Multiplicities

N _{trk} range	Fraction of data (%)	$\langle N_{trk} \rangle$	$\langle N_{trk}^{corr} \rangle$
[10, 20)	58.6	15.2	17.3
[20, 30)	33.1	23.1	25.7
[30, 40)	3.7	32.6	35.9
[40, 50)	0.4	42.8	47.1
[50, ∞)	< 0.1	53.0	58.4

LEP-II Multiplicities

PLB 765 (2017) 193 In pp, correlations emerge at the high multiplicities

Motivating a Search with LEP-II Data

10 5

Ζ

TRISTAN

SLC

120

80 100

Cross-section (pb)

10³

10² DORIS PEP PETRA

10

KEKB PEP-II

20

40 60

$N_{\rm trk}$ range	Fraction of data (%)	$\langle N_{\rm trk} \rangle$	$\langle N_{\rm trk}^{\rm corr} \rangle$
[5, 10)	3.1	8.2	8.9
[10, 20)	59.2	15.2	15.8
[20, 30)	34.6	23.1	23.4
$[30,\infty)$	3.1	32.4	32.6
$[35,\infty)$	0.5	36.9	37.2

LEP-I Multiplicities

N _{trk} range	Fraction of data (%)	$\langle N_{trk} \rangle$	$\langle N_{trk}^{corr} \rangle$
[10, 20)	58.6	15.2	17.3
[20, 30)	33.1	23.1	25.7
[30, 40)	3.7	32.6	35.9
[40, 50)	0.4	42.8	47.1
[50,∞)	< 0.1	53.0	58.4

LEP-II Multiplicities

Centre-of-mass energy (GeV)

200 220

I FD

e⁺e[−]→hadrons

- More complex final state of W^+W^- might achieve conditions for correlations
- Studies in AMPT from Nagle et al. suggest two color strings are sufficient

Two-particle Correlations in LEP-II

- Inclusive multiplicity has no correlation
- Hint of correlation at high multiplicity!
- Let's check the large $|\Delta \eta|$ projections...

Yu-Chen "Janice" Chen (MIT)

Christopher McGinn

Two-particle Correlations in LEP-II

- Inclusive multiplicity has no correlation
- Hint of correlation at high multiplicity!
- Let's check the large $|\Delta\eta|$ projections...

- Inclusive matches MC expectation
- Deviation from MC for $N_{trk} \geq 50$
- Correlations with no initial geometry!

Yu-Chen "Janice" Chen (MIT)

Extracting Associated Yields and Setting Limits

Accepted PLB

Low N_{trk}, can only set limits
Similar to LEP-I study shown

- At highest $N_{\rm trk}$, extract significant associated yield
 - $W^+W^- \rightarrow \geq$ 2 color strings?
 - Other mechanisms?
- Compare with MC to check trivial effects

Yu-Chen "Janice" Chen (MIT)

Comparing to theory and pp

• Inclusive N_{trk} well modeled by MC; MC does not model $N_{\text{trk}} \ge$ 50 v₂

Yu-Chen "Janice" Chen (MIT)

Christopher McGinn

Comparing to theory and pp

- Inclusive N_{trk} well modeled by MC; MC does not model $N_{\text{trk}} \ge$ 50 v₂
- Rising with $p_{\rm T}$ behavior also seen in pp
- Highest $p_{\rm T}$ in e^+e^- exceeds pp trend

Yu-Chen "Janice" Chen (MIT)

Conclusions

- New paper on search for correlations in e^+e^- with archival ALEPH data
 - First search at higher energy and multiplicities of LEP-II
 - Observe a correlation-like signal!
- Another piece in a much larger puzzle of two-particle correlations