Heavy Element Research at Texas A&M University

Cody Folden

Cyclotron Institute and Department of Chemistry Texas A&M University, College Station, Texas

NN2024 August 22, 2024

Current and Future History of Elements Above Oganesson (Z = 118)

- The great question is, "What reaction is most likely to lead to the discovery of the next new element?"
- Recently, actinide elements have been irradiated with ⁴⁸Ca.

- A number of reactions have been studied using projectiles heavier than ⁴⁸Ca, but none have succeeded:
- ${}^{58}Fe + {}^{244}Pu \rightarrow {}^{298}120 + 4n$
- ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{298}120 + 4n$
- ${}^{50}\text{Ti} + {}^{249}\text{Cf} \rightarrow {}^{295}\text{120} + 4n$

- ${}^{64}\text{Ni} + {}^{238}\text{U} \rightarrow {}^{298}\text{120} + 4n$
- ${}^{50}\text{Ti} + {}^{249}\text{Bk} \rightarrow {}^{295}\text{119} + 4n$
- ${}^{51}V + {}^{248}Cm \rightarrow {}^{295}119 + 4n$

Projectiles with $Z \ge 20$ Reacting with Lanthanide Targets

Cyclotron Institute Layout

Summary of ⁴⁴Ca + ^{154,156,157,160}Gd

T. A. Werke et al., Phys. Rev. C 106, 054615 (2022). doi:10.1103/PhysRevC.106.054615

⁴⁸Ti + ^{156-158,160}Gd, ¹⁶²⁻¹⁶⁴Dy (Preliminary Data)

- In 2023, we studied the influence of CN deformation on survival using ⁴⁸Ti + ^{156-158,160}Gd, ¹⁶²⁻¹⁶⁴Dy.
- First production experiment using MIVOC.

Jordan Mildon

Kinetic Displacement of the Reaction (KDR, Preliminary Data)

Christa Pritchard Predicted excitation functions for elements 120 and 119 vary partly because of the different mass tables used.

The Most Important Questions

- Over one year of beamtime has been spent on discovering elements 119 and 120. No decays chains have been reported.
- Theoretical predictions show a wide variation in cross section and optimum energy.
- What are the most important questions?
 - What are the fission barriers for superheavy nuclei?
 - What is the influence of angular momentum, both in the entrance channel and on the fission barrier?
 - How does *P*_{CN} change with any parameter?

Functionalized Detector Surfaces

Vera Zakusilova

Sulfur 2p XPS for Im-C₁₁-SH SAMs Adsorbed on Au

 Quantitative coverage [(99± 6)%] of Au-coated Si chips with 1-(11-mercaptoundecyl)imidazole (Im-C₁₁-SH) molecules.

Self-Assembly of Im-C₁₁-SH Molecules

V. Zakusilova et al., Appl. Surf. Sci. 642, 158356 (2024). (link)

Functionalized Detector Surfaces (Preliminary Data)

Vera Zakusilova

We have measured the adsorption of Er, At, and Ir on functionalized Si detectors.

V. Zakusilova *et al.*, in preparation (2024).

Chemically-Tunable Detectors for Chromatography of Po

Amelia Kirkland

- Self-assembled monolayers (SAMs) can be used to create chemically tunable surfaces for studying gas-solid interactions.
- Po (Z = 84), a lighter homolog of Lv (Z = 116), is being studied on a 1,9-nonanedithiol (NDT) surface.

Simplified Recoil Transfer Chamber

- We have designed a new recoil transfer chamber for our functionalized detector surface experiments.
- Characterization is ongoing.

Vacuum Chromatography for Short-Lived SHE

Georg Tiebel

May 2024: ¹⁴⁷Sm(³⁶Ar, 5n)¹⁷⁸Hg $t_{\frac{1}{2}} = 266$ ms

Isotopes of SHEs beyond Fl are in the subsecond domain → Wanted: New experiments! **Isothermal vacuum chromatography** tested.

Slide prepared by P. J. Steinegger.

Vacuum Chromatography for Short-Lived SHE

Georg Tiebel

May 2024: ¹⁴⁷Sm(³⁶Ar, 5n)¹⁷⁸Hg $t_{\frac{1}{2}} = 266$ ms

Slide prepared by P. J. Steinegger.

Acknowledgements: Coworkers and Funding Agencies

- M. C. Alfonso
- M. Yu. Boltoeva
- K. L. Childers
- R. Eichler
- K. J. Glennon
- J. R. Garcia
- I. W. Haynes
- D. Herrmann
- A. S. Kirkland
- Y. Ito
- D. A. Mayorov
- J. A. Mildon

- C. D. Pritchard
- A. Rubio Reyes
- C. S. Salas
- T. Sato
- P. J. Steinegger
- E. E. Tereshatov
- G. A. Tiebel
- M. F. Volia
- A. Vögele
- T. A. Werke
- D. M. Wright

Thank you to our funding agency:

