14th International Conference on Nucleus-Nucleus Collisions (NN2024)

Contribution ID: 202

Type: Contributed Oral

Heavy Element Research at Texas A&M University

Thursday, 22 August 2024 17:35 (15 minutes)

At the Cyclotron Institute at Texas A&M University, the Heavy Elements Group has been working to study compound nucleus survivability, develop new techniques for heavy element chemistry experiments, and increase the sensitivity of the AGGIE gas-filled separator. As an analog of superheavy element production, we have investigated the effects excitation energy, deformation, and neutron binding energy using the 44 Ca + ^{154,156,157,160}Gd reactions. Current research is focused on the ⁴⁸Ti + Gd, Dy reactions. In addition, we have been modifying Si detectors by adding a covering layer of Au and various organic monolayers; these effectively convert the detectors into a chromatography column. We recently completed a study of the adsorption of Er, Ir, and At on two different self-assembled monolayer (SAM) surfaces, and we are planning a future experiment to study the adsorption of Po on a SAM created with 1,9-nonanedithiol. An offline source of ²¹⁶Po is being used for preparatory experiments and an online experiment using short-lived Po isotopes is planned. We are also collaborating with researchers from the Paul Scherrer Institute in Switzerland to perform chemical experiments on nuclides with sub-second half-lives. We are upgrading the maximum magnetic rigidity of AGGIE to enable future experiments with heavier elements, including a potential study of No adsorbed on a SAM. Operational improvements at the Cyclotron Institute, including the use of a metal ion volatile organic compound (MIVOC) as ion source material, have also increased our sensitivity. This talk will discuss the most recent results and future plans.

Funding Agency

Email Address

Folden@comp.tamu.edu

Presenter if not the submitter of this abstract

Primary author: FOLDEN, Charles (Texas A&M University)Presenter: FOLDEN, Charles (Texas A&M University)Session Classification: Heavy & Superheavy Elements

Track Classification: Heavy and Superheavy Elements