The First Year of Physics with NEEDLE

Grzegorz Jaworski Heavy Ion Laboratory University of Warsaw

Poland

Insight into the structure of neutron-deficient nuclei

Various neutron detectors with: NORDBALL, OSIRIS, GASP NEDA: 2018 AGATA (GANIL) 2023- EAGLE (HIL)

Neutron Wall

 1998
 EUROBALL (LNL)

 2001-2003
 EUROBALL (IReS)

 2005-2014
 EXOGAM (GANIL)

 2015-2017
 GALILEO (LNL)

 2018
 AGATA (GANIL)

n selection

EXOGAM experiment: ⁵⁸Ni (240 MeV) + ⁵⁴Fe

NEEDLE @ HIL - G. Jaworski - NN2024 Whistler

NEDA 2007-2018

Simulations:

NIM A 673 (2012) 64, EPJA 52 (2016) 55

PMTs, timing, NGD:

NIM A 767 (2014) 83, NIM A 775 (2015) 71, NIM A 897 (2018) 59, NIM A 916 (2018) 238, NIM A 986 (2021) 164750

Electronics:

IEE-NPSS RTC (2012) 1, IEEE-TNS 60 (2013) 3526, IEEE-NPSS RTC (2014) 1, IEEE TNS 62 (2015) 1056, IEEE TNS 62 (2015) 2063

General:

NIM A 927 (2019) 81, APP B 50 (2019) 573

Light matters!

NEEDLE @ HIL - G. Jaworski - NN2024 Whistler

NEEDLE @ HIL – G. Jaworski – NN2024 Whistler

NEEDLE $2022 \rightarrow$

EAGLE (HPGe):

- 5 dets @ 101°
- 5 dets @ 117°
- 5 dets @ 143°

NEDA:

- 6/7 dets ~0°
- 15 dets @ 37°
- 15 dets @ 63°
- 15 dets @ 79°

Other ancillaries

Diamant

- Full configuration: eff(p) = 60% $eff(\alpha) = 40\%$
- Without bw dets (plunger): eff(p) = 40% $eff(\alpha) = 35\%$

Plunger(s)

Electron spectrometer

Electronics and DAQ

Transformation from: EAGLE: analog CAMAC based system, some digital elem. NEDA: numexo2 (diff. input), GTS, Trigger Processor

- Custom made amplitude limiters restrict the NEDA signals to 2V (Aucor, Warsaw);
- 6 CAEN V1725(S)(B) digitizers (6x16 channels, 14-bit, 250 MHz sampling):
 - 2 units with PHA firmware for HPGe and ACS
 - 4 units with PSD firmware for NEDA ("at least one PSD discriminated neutron" signal available for the trigger request)
- trigger validation logic implemented in external NIM units;

for validated events: readout of all non-zero channels (NEDA: not only PSD discriminated neutrons – gamma-ray time ref. and multiplicity filtering possible);

- Software:
 - XDAQ (CERN) with LNL applications;
 - Spy and GreWare for on-line spectra;
 - GRAFANA for monitoring of rates;
 - ROOT selector for off-line (→ RadWare, TV, etc.).

reedle_

Read-out – with DIA

NEEDLE @ HIL - G. Jaworski - NN2024 Whistler

Experiments performed $2023 \rightarrow today$

id	dates	spokeperson	title		ancillary devices	
HIL 099	1/03–12/03/2023 11 days	B. Saygi, G. Jaworski	Lifetime measurement of excited states in ¹³⁴ Sm	³² S, 150 MeV	NEDA, Köln plunger	
HIL 097	20/03–4/04/2023 14 days	C. Petrache	Shape coexistence and octupole correlations in the light Xe, Cs and Ba nuclei	¹⁶ O, 86 MeV	NEDA, Köln plunger	
HIL 106	13/06– 29/06/2023 14 days	C. Petrache	Shape coexistence and octupole correlations in the light Xe, Cs and Ba	³² S, 150 MeV	NEDA, Köln plunger	
					DIAMANT	
HIL	13–30/11/2023 16 days	M. Palacz	Single-proton states and N=Z=28 core	³² S, 82 MeV	NEDA, Installation	
105						
HIL 115	5-20/12/2023 15 days	M. Matejska- Minda P. Bednarczyk	Study of the anomalous behavior of the Coulomb energy difference in the A = 70, $T = 1$ izobaric multiplet	³² S, 88 MeV	NEDA, DIAMANT	
HIL 114	17—31/01/2024 14 days	B. Saygi, M. Palacz	Gamma-ray spectroscopy of ¹³⁴ Sm	³² S, 145 MeV	NEDA, DIAMANT	
HIL 117	18–26/03/2024 7 days	K. Miernik	¹⁴⁴ Dy fission studies	³² S, 212 MeV	NEDA, DIAMANT	
HIL 126	9-24/05/2024 16 days	I. Kuti	Search for candidate wobbling bands in ¹⁰³ Pd and in ¹⁰¹ Ru	¹² C, 69 MeV	NEDA, DIAMANT	

NEEDLE Performance

$^{32}S + ^{92}Mo \rightarrow ^{124}Ce (CN) \rightarrow ^{120}Ba + 2p2n$ (HIL106)

NEEDLE @ HIL - G. Jaworski - NN2024 Whistler

NEEDLE Performance

88 MeV ³²S + ²⁷Al

NEEDLE's Backlog

id	days	spokeperson	title	beam	anc. dev.
HIL 127	15	A. Fijałkowska, G Jaworski	The discovery of excited states in very neutron defficient europium nuclei	⁴⁰ Ca, 180–190 MeV	NEDA DIAMANT
HIL 129	15	G. Jaworski, A. Fijałkowska	The discovery of excited states in very neutron deficient ⁶³ Ge nucleus	⁴⁰ Ca, 100–110 MeV	NEDA, DIAMANT

if only Ni beam would be available...

NEEDLE @ HIL - G. Jaworski - NN2024 Whistler

Fig. 1 | **Nuclear chart around the rp process WP**⁶⁴**Ge.** The nuclides are organized according to neutron (horizontally) and proton (vertically) numbers. Nuclides whose masses were taken from the latest AME'20 database³⁶, whose masses were experimentally determined or whose mass uncertainties were improved in this work are indicated in black, red and blue colours, respectively. The one-proton (S_p) and two-proton (S_{2p}) separation energies (values expressed in keV) follow the same colour code. The pathway of the rp process nucleosynthesis is shown with the black arrows. The legend provides more details.

X. Zhou et al. - Nature Physics 19 (2023) 1091

Observation of excited states in ⁶³Ge allowing to reckon:

- \rightarrow proton and neutron spe,
- \rightarrow core excitations,
- → 63 Ga isospin symmetry within the states of 2p3/2, 1f5/2, 2p1/2 shells,
- → ? collective octupole effects due to p3/2-g9/2 correlations observed in ⁶⁵Ge,
- \rightarrow possibly astro-physical significance.

NEEDLE @ HIL – G. Jaworski – NN2024 Whistler

¹³⁵Eu at al.

									Ho141	Ho142
									4.1 ms	400 ms
Dy138								Dy139	Dy140	Dy141
2								600 ms	700 ms	900 ms
Tb136 Tb1							Tb137	Tb138	Tb139	Tb140
200 ms 600							600 ms	800 ms	1.6 s	2.4 s
						Gd135	Gd136	Gd137	Gd138	Gd139
					400 ms	1.1 s	1 s	2.2 s	4.7 s	5.7 s
		Eu130	Eu131	Eu132	Eu133	Eu134	Eu135	Eu136	Eu137	Eu138
		1.1 ms	17.8 ms	100 ms	200 ms	500 ms	1.5 s	3.3 s	8.4 s	12.1 s
	Sm128	Sm129	Sm130	Sm131	Sm132	Sm133	Sm134	Sm135	Sm136	Sm137
	500 ms	550 ms	1 s	1.2 s	4.0 s	2.90 s	10 s	10.3 s	47 s	45 s
Pm126	Pm127	Pm128	Pm129	Pm130	Pm131	Pm132	Pm133	Pm134	Pm135	Pm136
500 ms	1 s	1.0 s	3 s	2.6 s	6.3 s	6.3 s	15 s	22 s	49 s	107 s

First measurement prompt gamma rays in rare-earth europium nuclei (^{135, 136}Eu) produced in heavy-ion induced, fusion-evaporation reactions

eedle_

Establish at least the ground state rotational sequence, to extend the knowledge of collective excitations in the isotope well beyond N=82.

Verify and possible extend knowledge about ¹³⁷Eu excited states

→ LoI for AGATA (+Euclides+Prisma) Highly deformed bands in europium isotopes and identification of new isotopes ($^{135-139}$ Eu) – C. Sullivan et al.

Beginning of mapping of the region =)

NEDA will leave but can come back =D

⁴⁰Ca beam in spe

NEEDLE @ HIL – G. Jaworski – NN2024 Whistler

Beams @ HIL

Cyklotron K= 90 – 160								
Jon	Energy min [MeV]	Energy max [MeV]	Energy max [MeV/nukl]	Intensity of the extracted beam [nA]	Intensity of the extracted beam [pnA]	Intensity of the extracted beam [p/s]		
¹⁰ B ⁺²	51	55	5.5	45	9.0	5.6 10 ⁺¹⁰		
¹¹ B ⁺²	40	50	4.5	50	10.0	6.3 10 ⁺¹⁰		
¹² C ⁺²	38	50	4.2	100	16.7	1.0 10 ⁺¹¹		
¹² C ⁺³	53	92	7.7	220	36.7	2.3 10 ⁺¹¹		
¹³ C ⁺³		90	6.9	90	16			
¹⁴ N ⁺²	32	50	3.6	240	34.3	2.1 10 ⁺¹¹		
¹⁴ N ⁺³	57	91	6.5	1500	214.3	1.3 10 ⁺¹²		
¹⁵ N ⁺³		43	2.9	50	7.1			
¹⁶ O ⁺³	46	80	5.0	400	50.0	3.1 10 ⁺¹¹		
¹⁶ O ⁺⁴	80	120	7.5	650	81.3	5.1 10 ⁺¹¹		
¹⁸ O ⁺⁴	100	120	6.7	2000	250.0	1.6 10 ⁺¹²		
¹⁹ F ⁺³	50	66	3.5	10	1.1	6.9 10 ⁺⁹		
²⁰ Ne ⁺³	45	68	3.4	300	30.0	1.9 10 ⁺¹¹		
²⁰ Ne ⁺⁴	68	115	5.8	1300	130.0	8.1 10 ⁺¹¹		
²⁰ Ne ⁺⁵	130	160	8.0	120	12.0	7.5 10 ⁺¹¹		
²² Ne ⁺³	44	55	2.5	260	26.0	1.6 10 ⁺¹¹		
²⁴ Mg ⁺⁴		77	3.2	120	10			
³² S ⁺⁵	79	110	3.4	50	3.1	2.0 10 ⁺¹⁰		
³² S ⁺⁶	120(*)	150	4.7	70	4.4	2.7 10 ⁺¹⁰		
³² S ⁺⁷	120(*)	142	4.4	50	3.1	2.0 10 ⁺¹⁰		
⁴⁰ Ar ⁺⁶	90 ^(*)	132	3.7	100	5.6	3.6 10 ⁺¹⁰		
⁴⁰ Ar ⁺⁷	130(*)	164	4.1	35	1.9	1.2 10 ⁺¹⁰		
⁴⁰ Ar ⁺⁸	180(*)	200	5.0	40	2.2	1.4 10 ⁺¹⁰		
*) estimation no experimental data								

⁴⁰Ca in the autumn/winter

Take home

- Good setup to access proton-reach nuclei available in Warsaw
- Fully digital read-out, new ACQ system, all battle-tested
- NEEDLE+DIAMANT full evaporation channel tagging available
- Join us for the experiments! Coming: ⁶³Ge, ¹³⁵Eu
- Get ready for the next PAC Dec 2024!
- NEDA till mid 2026 (?)
- DIAMANT stays

tatrofil@slcj.uw.edu.pl

Acnowledgment:

the installation and the use of NEDA at HIL is supported by NCN (SONATA) grant no. 2020/39/D/ST2/00466

The Needlers

- M. Palacz (near-line, analysis, ...)
- A. Goasduff, N.Toniollo (daq)
- I. Kuti, J. Molnar (DIAMANT, daq)
- M. Kowalczyk, P. Kulessa, M. Ciemała (daq, near-line)
- J. Grębosz (spy, GreWare on-line spectra)

Institutes

- HIL-UW,
- LNL Legnaro
- ATOMKI
- IFJ Kraków
- FUW
- IKP Köln
- NCNR Świerk
- M. Komorowska, M. Kisieliński, A. Špaček, T. Abraham, W. Okliński (HPGe, EAGLE front-end)
- C. Fransen, C. Lakenbrink, M. Beckers, F. v. Spee, C. Müller-Gatermann, A. Nałęcz-Jawecki (plunger)
- G. Colucci, A. Fijałkowska, K. Hadyńska-Klęk, A. Korgul, P.J. Napiorkowski, S. Panasenko, I. Piętka, J. Samorajczyk-Pyśk, P. Sekrecka, A. Tucholski, K. Wrzosek-Lipska (various support)
- B. Radomyski, M. Matuszewski (mechanics projects, 3D print)
- R. Kopik, P. Jasiński, M. Antczak (mechanical workshop)
- A. Stolarz, J. Kowalska (targets)
- students: A. Malinowski, A. Otręba, W. Poklepa, M. Regulska, K. Solak, K. Szlęzak, K. Zdunek
- spokepersons and experiments' participants
- All HIL-UW stuff, including the cyclotrone operators: https://www.slcj.uw.edu.pl/en/staff/

Performance at GANIL (E703 experiment) 50 Cr (175 MeV) + 58 Ni \rightarrow 108 Te (CN)

 $\epsilon_n = 0.30$ $\epsilon_{2n} \approx 0.06$ $P(\gamma \rightarrow n) \approx 0.001$ $P(1n \rightarrow 2n) \approx 5*10^{-4}$

Total fusion x-section \approx 300 mb ¹⁰⁴Sn produced with the emission of 2p2n $\sigma(^{104}Sn) \approx 0.5$ mb

NEEDLE $2022 \rightarrow$

needle_

EAGLE (HPGe):

- 5 dets @ 101°
- 5 dets @ 117°
- 5 dets @ 143°

NEDA:

- 6/7 dets ~0°
- 15 dets @ 37°
- 15 dets @ 63°
- 15 dets @ 79°

Efficiencies

Basic parameters:

- EAGLE: 15 det. ACS HPGe eff(γ) = 1.5% @1.3 MeV
- NEDA: 51/52 det.eff(1n) = ~28%, eff(2n) = 6%
- NEEDLE: $eff(\gamma\gamma 2n) = 1.26e-5$

EAGLE

A flexible gamma-ray spectroscopy array able to accommodate up to 30 HPGe detectors with ACS shields and ancillary devices.

central European Array for Gamma Levels Evaluations

Truncated icosahedron:

- 20 hexagonal faces, 4x5 theta angle rings: 37°, 79°, 101°, 143°
- 10 pentagonal faces 2x5 rings: 63°, 117°
- 2 pentagonal faces (beam in/out)

Minimum distance target-detector (collimator):

- hexagon: ~ 11cm eff=0.001 at 1.3 MeV
- pentagon: ~ 15 cm eff=0.0008

Loan from GAMMAPOOL

of 16 HPGe detectors (~60%) and 15 ACS. HIL owns 19 smaller HPGe's (20 to 40%) with ACS's.

Typically ~15 detectors used in experiments, including ~14(+/- 1) GAMMAPOOL

total eff. ≈ 1.3 % at 1.3 MeV

Single proton states at N=Z=28 and core excitations in ⁵⁷Cu

M. Regulska – BSc thesis A. Malinowski – MSc thesis

DIAMANT

CsI(Tl) scintillators (1), optically coupled with light guides (2) to PIN photodiodes (3), with in-vacuum preamps

80 CsI(Tl) scintillators, mounted on a flexible PCB, the FlexiBoard

Being very compact, DIAMANT can be easily placed around the target, inside the reaction chamber.

Courtesy of I. Kuti

NEDA at GANIL (2018)

DIAMANT

80 CsI detectors, rhombicuboctahedron, plus f.w. able to register and distinguish protons and alpha particles emitted in a fusion-evaporation reaction

 $\epsilon_{p} \approx 0.6 \qquad \epsilon_{\alpha} \approx 0.4$

DAQ:

- present: NUMEXO2 digitizers and GANIL software, AGAVA;
- in progress: new CAEN R5560 digitizer purchased by ATOMKI to replace NUMEXO2 128 channels/125 MHz/14 bit (double trapezoid firmware development in progress)

hDiaEnergyPID07 hDiaEnergyPID07 믭 Entries 80640 2092 Mean 0.9 Mean 0.4038 Std Dev x 783.2 0.8 Std Dev y 0.06995 0.7 60 0.6 50 0.5 40 0.4 30 0.3 20 0.2 10 0.1 5000 6000 7000 1000 Energy

Rozróżnienie neutron/y oraz 2n/1n

NEEDLE Performance

needle_

 $^{16}O + ^{106}Pd \rightarrow ^{122}Xe (CN) \rightarrow ^{118}Xe + 4n$ (HIL097)

NEDA and DIAMANT

Read-out – NEEDLE

NEDA: Caen V1725 x4 with DPP-PSD EAGLE: V1725 x2 with DPP-PHA

- 250 MHz, 14 bit
- 16-ch VME modules:
 MCX connectors
- Dynamic range 0.5 and 2 Vpp + setable DC offset
- DPP algorithms implemented in FPGA: PHA, PSD
- Read-out optical link (and VME64)
- 16 programmable LVDS I/Os
- Daisy chain possibility
- COMPASS, C & LabVIEW libraries

NEDA: Amplitude limiters needed

Quality starts from the initial signal.

⁶³Ga – mirror nuclei of

Excited states in 63Ge with Neeal

needle. 5

Reactions and x-secs

 ${}^{40}\text{Ca} + {}^{28}\text{Si} \rightarrow {}^{78}\text{Se} \rightarrow {}^{63}\text{Ge} + \alpha n$ (${}^{40}\text{Ca} @ 105 \text{ MeV}$)

⁶³Ge x-sec: ~0.1 mb (HIVAP)

 36 Ar + 32 S → 78 Se → 63 Ge + α n (issue: ~60 k€ cost for 36 Ar bottles)

NEDA @ HIL, G. Jaworski, NTNPD Workshop, 25.10.2021

Scintillator

Prototype

Detector production

Detector production

Characterisation

Characterisation

NEDA #21

Fig. 2. Digitized waveforms averaged over 10⁵ events for the four 5 in. PMTs coupled to a cylindrical 5 in. by 5 in. BC501A. The sampling frequency of the digitizer was 500 MS/s. The waveforms were normalized to a pulse height of 1000 and time aligned at the maximum of the signal. Dashed lines are drawn at 10%, 90%, at the maximum and at the baseline of the waveform to guide the eye.

Geant 4 simulations

Light to energy dependence

Light output for 2 MeV neutrons Instrumental response function included

G.Jaworski et al. NIM A673 (2012) 64

Geant 4 simulations

Neutron detection efficiency

G.Jaworski et al. NIM A673 (2012) 64