14th International Conference on Nucleus-Nucleus Collisions (NN2024)

Contribution ID: 84

Type: Contributed Oral

(Zoom) Study of νp - Process Nucleosynthesis in Core Collapse Supernovae via ⁵⁶Ni(d, p) Reaction

Monday, 19 August 2024 15:35 (15 minutes)

Understanding the origin of elements in our universe is inevitable for modern nuclear physics. It is known that neutron-deficient stable isotopes, referred to as p-nuclei, are synthesized through the p-process triggered by photo-disintegration in supernovae. One of the major issues that remain unresolved is the anomalously large abundances for certain lighter p-nuclei in current astrophysical scenario, such as 92,94 Mo and 94,96 Ru. A new scenario to account for the production of lighter p-nuclei is the neutrino driven rapid-proton capture (νp) process, which is predicted to occur in the core collapse supernovae. While the νp -process has been well-understood theoretically for the past decade, large uncertainties remain due to the lack of experimental data, especially for the neutron capture rate of the most critical waiting point in the νp -process: 56 Ni, which has a long β decay lifetime of 6 days and thus dominates the abundance of heavier p-nuclei. Since direct determination of the reaction cross section of 56 Ni(n, p) 56 Co is challenging, we have applied the surrogate method instead by measuring the (d, p) reaction. The experiment was performed at OEDO-SHARAQ beamline at RIBF, RIKEN. The secondary ⁵⁶Ni beam was produced by projectile fragementation of ⁷⁸Kr, purified by BigRIPS separator and energy-degraded by OEDO. Recoiled protons were measured to establish the missing mass spectroscopy. Decay channels were identified by measuring projectile-like nuclei transporting through the high-resolution spectrometer SHARAQ. In this presentation, details of the experiments and preliminary results will be presented.

Funding Agency

RIKEN

Email Address

jt.li@cns.s.u-tokyo.ac.jp

Presenter if not the submitter of this abstract

Primary author: LI, Jiatai (Center for Nuclear Study, the University of Tokyo & RIKEN Nishina Center)

Co-authors: SUZUKI, Daisuke (RIKEN Nishina Center); MAUSS, Benoit (CEA-DAM); IMAI, Nobuaki (Center for Nuclear Study, the University of Tokyo); MICHIMASA, Shinichiro (Center for Nuclear Study, the University of Tokyo); ISHIO, Shojiro (Tohoku University); IWASA, Naohito (Tohoku University); SAKURA02 COLLABORA-TION

Presenter: LI, Jiatai (Center for Nuclear Study, the University of Tokyo & RIKEN Nishina Center)

Session Classification: Nuclear Astrophysics

Track Classification: Nuclear Astrophysics