

Ab Initio investigation of ${}^{7}\text{Li}(p,\gamma){}^{8}\text{Be}$ and ${}^{7}\text{Li}(p,e^{+}e^{-}){}^{8}\text{Be}$ Processes

Peter Gysbers Facility for Rare Isotope Beams

NN2024 - August 21, 2024

Acknowledgements

Ab Initio investigation of the $^7\mathrm{Li}(p,e^+e^-)^8\mathrm{Be}$ process and the X17 boson. PRC **110**, 015503 (2024) arXiv:2308.13751

Coauthors

- TRIUMF: Petr Navratil
- LLNL: Sofia Quaglioni, Kostas Kravvaris
- ► IJCLab: Guillaume Hupin

The X17 Anomaly in $p + {}^{7}\text{Li} \rightarrow {}^{8}\text{Be} + e^+e^-$

- ▶ ${}^{7}\text{Li}(p, e^{+}e^{-}){}^{8}\text{Be}$ @ATOMKI (Hungary) [PRL 116 042501 (2016)]
- ► Decay of composite ⁸Be produces electron-positron pairs

The X17 Anomaly in $p + {}^{7}\text{Li} \rightarrow {}^{8}\text{Be} + e^{+}e^{-}$

- ▶ ${}^{7}\text{Li}(p, e^{+}e^{-}){}^{8}\text{Be}$ @ATOMKI (Hungary) [PRL 116 042501 (2016)]
- ► Decay of composite ⁸Be produces electron-positron pairs
- Anomaly in pair distribution implies an intermediate particle of mass 17 MeV

The X17 Anomaly in $p + {}^{7}\text{Li} \rightarrow {}^{8}\text{Be} + e^{+}e^{-}$

- ▶ ${}^{7}\text{Li}(p, e^{+}e^{-}){}^{8}\text{Be}$ @ATOMKI (Hungary) [PRL 116 042501 (2016)]
- ► Decay of composite ⁸Be produces electron-positron pairs
- Anomaly in pair distribution implies an intermediate particle of mass 17 MeV

Radiative Capture: $P + T \rightarrow F + \gamma/e^+e^-$

Ab Initio Calculations of Many-Nucleon Systems

Want to find the eigenstates of a realistic Hamiltonian

$$H^A |\Psi_\lambda\rangle = E_\lambda |\Psi_\lambda\rangle$$
, where $H^A = \sum_i^A T_i + \sum_{i < j} V_{ij}^{NN} + \sum_{i < j < f} V_{ijf}^{3N}$

Ab Initio Calculations of Many-Nucleon Systems

Want to find the eigenstates of a realistic Hamiltonian

$$H^A |\Psi_\lambda\rangle = E_\lambda |\Psi_\lambda\rangle$$
, where $H^A = \sum_i^A T_i + \sum_{i < j} V_{ij}^{NN} + \sum_{i < j < f} V_{ijf}^{3N}$

No-Core Shell Model (NCSM)

$$\left| {}^{(A)} \mathfrak{B}, \lambda \right\rangle \rangle = \sum_{N=0}^{N_{\text{max}}} \sum_{j} c_{Nj}^{\lambda} \left| \Phi_{Nj} \right\rangle$$

Ab Initio Calculations of Many-Nucleon Systems

Want to find the eigenstates of a realistic Hamiltonian

$$H^A |\Psi_\lambda\rangle = E_\lambda |\Psi_\lambda\rangle$$
, where $H^A = \sum_i^A T_i + \sum_{i < j} V_{ij}^{NN} + \sum_{i < j < f} V_{ijf}^{3N}$

No-Core Shell Model with Continuum (NCSMC)

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| {}^{(A)} \mathfrak{B}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \mathfrak{B}_{(A-a)}^{\vec{r}} \mathfrak{B}, \nu \right\rangle$$

NCSMC Equations

NCSMC for ${}^{7}\text{Li}(p,\gamma){}^{8}\text{Be}$

$$\left|\Psi_{\mathsf{NCSMC}}^{(8)}\right\rangle = \sum_{\lambda} c_{\lambda} \left|^{8} \mathrm{Be}, \lambda\right\rangle + \sum_{\nu} \int \mathrm{d}r \gamma_{\nu}(r) \hat{A}_{\nu} \left|^{7} \mathrm{Li} + p, \nu\right\rangle + \sum_{\mu} \int \mathrm{d}r \gamma_{\mu}(r) \hat{A}_{\mu} \left|^{7} \mathrm{Be} + n, \mu\right\rangle$$

Process:

- \blacktriangleright Solve NCSM for each constituent nucleus: $^8\mathrm{Be},~^7\mathrm{Li}$ and $^7\mathrm{Be}$
 - ► 30 eigenstates from ⁸Be
 - \blacktriangleright 5 eigenstates each from $^7{\rm Li}$ and $^7{\rm Be}$
- Solve NCSMC for $c_{\lambda}(E), \gamma_{\nu}(r, E), \gamma_{\mu}(r, E) \rightarrow |\Psi(E)\rangle$
- Cross-section depends on transition matrix elements e.g. $\langle \Psi(E_f) | M1 | \Psi(E_i) \rangle$

Results

The NCSMC allows simultaneous calculation of many observables

- ⁸Be Structure
- \bigcirc Scattering: ⁷Li(p, p)⁷Li, ⁷Be(n, n)⁷Be
- Transfer Reactions: ${}^{7}\text{Li}(p,n){}^{7}\text{Be}, {}^{7}\text{Be}(n,p){}^{7}\text{Li}$
- Radiative Capture: ${}^{7}\text{Li}(p,\gamma){}^{8}\text{Be}$
- Search for new physics: ${}^{7}\text{Li}(p, e^{+}e^{-}){}^{8}\text{Be}, {}^{7}\text{Li}(p, X){}^{8}\text{Be}$

⁸Be Structure

Calculations of ⁸Be "bound" states (w.r.t. ⁷Li + p threshold) are improved by inclusion of the continuum ($N_{max} = 9$)

- Energies likely too high due to neglected α + α breakup
- Matches experiment well, except the 3rd 2⁺ is still slightly above the ⁷Li + p threshold [TUNL Nuclear Data Evaluation Project]

⁸Be Structure

Calculations of ⁸Be "bound" states (w.r.t. ⁷Li + p threshold) are improved by inclusion of the continuum ($N_{max} = 9$)

- Energies likely too high due to neglected α + α breakup
- Matches experiment well, except the 3rd 2⁺ is still slightly above the ⁷Li + p threshold [TUNL Nuclear Data Evaluation Project]

Eigenphase-shift Results (positive parity)

Additional resonances are seen compared to TUNL data evaluation

Radiative Capture (γ) $\hat{O}_{\gamma} = E1 + M1 + E2$ $\stackrel{2S+1}{P_{J}} : \left[\left(|^{7} \text{Li} \rangle |_{p} \right)^{(S)} Y_{L}(\hat{r}) \right]_{P : L = 1}^{J}$

[Data: Zahnow et al Z.Phys.A **351** 229-236 (1995)] Phenomenological adjustment: fit threshold and resonance positions to match experiment

Radiative Capture (e^+e^-)

Counts ∝ partially integrated differential cross section

Radiative Capture (e^+e^-)

- Counts ∝ partially integrated differential cross section
- E1 and M1 are dominant
- Inclusion of interference between initial channels improves agreement

Radiative Capture (e^+e^-)

- ► Counts ∝ partially integrated differential cross section
- E1 and M1 are dominant
- Inclusion of interference between initial channels improves agreement
- But theory and data still inconsistent - possible M1 contamination from lower resonance

More Results

- Updated ATOMKI data (2022) arXiv:2205.07744
- Data in-between resonances seems to be contaminated by M1 from first resonance

Summary and Outlook

- The NCSMC successfully describes the spectrum of ⁸Be, radiative capture and electron-positron production
- The X17 remains unconfirmed
 - apparent contamination of data between resonances due to proton energy loss in the thick target
 - independent experimental tests are in analysis phase (e.g. the NewJEDI collaboration)
- ► To do:
 - ATOMKI experiments in other systems: ${}^{3}H(p, e^{+}e^{-}){}^{4}He$, ${}^{11}B(p, e^{+}e^{-}){}^{12}C$
 - investigate γ angular distributions
 - ▶ pair production for capture to the 2⁺
- Investigation and adjustment of higher-lying resonances necessary for scattering and charge exchange reactions

Electron-Positron Pair Production

$$\frac{\mathrm{d}^4\sigma}{\mathrm{d}\Omega_+\mathrm{d}\Omega_-}(\Theta) = \int \mathrm{d}y \frac{2\alpha^2}{(2\pi)^3} \frac{\omega p_+ p_-}{Q^4} \sum_{n=1}^6 v_n R_n$$

- $\bullet \ \hat{O}_{ee} \sim \ell_{\mu} \mathcal{J}^{\mu}$
- v_n are kinematic factors
- R_n are products of operator matrix elements
 - $R_1 \sim |\mathcal{C}|^2$: Coulomb
 - $R_4 \sim |\mathcal{T}|^2$: Transverse
 - others mix e.g. $C^*T + T^*C$
- ► *y* is the "pair asymmetry":

$$y = \frac{E_{+} - E_{-}}{E_{+} + E_{-}}$$

Results

- ► Measurement against the electron-positron separation angle Θ
 - v_n and Q are functions of cos Θ
 - $R_n \sim \sum_K a_K^{(n)} P_K(\cos \frac{\pi}{2})$
- E1 and M1 are dominant
- Inclusion of interference between initial channels improves agreement with data

Solving the NCSMC

- R-matrix on a Lagrange mesh
- Solve for generalized *S*-matrix: $S_{\nu\nu_i}^{J\pi}$
- Diagonal phase shifts: $S^{J\pi}_{\nu\nu} \sim e^{2i\delta^{J\pi}_{\nu}}$
- Eigen-phase shifts: $e^{2i\delta^{J\pi}_{\mu}}$, eigenvalues of S

The X17 Anomaly in $p + {}^{7}\text{Li} \rightarrow {}^{8}\text{Be} + e^{+}e^{-}$

[Firak, Krasznahorkay, et al EPJ Web of Conferences **232** 04005 (2020)]

20/15

Constraints on m_X

In the frame of the X boson the electron and positron momenta are anti-parallel. Boosted to a minimum separation angle:

$$\Theta = 2\sin^{-1}(\frac{m_X}{E_X})$$

- Anomaly in pair distribution observed at the energy of the second 1⁺ resonance
- ► Observed in-between resonances in ⁴He (³H(p, e⁺e⁻)⁴He)
- Both experiments consistent with 17 MeV bosons decaying to e⁺e⁻

Input States from NCSM

$$\Psi_{\mathsf{NCSMC}}^{(8)} = \sum_{\lambda} c_{\lambda} \left|^{8} \mathrm{Be}, \lambda \right\rangle + \sum_{\nu} \int \mathrm{d}r \gamma_{\nu}(r) \hat{A}_{\nu} \left|^{7} \mathrm{Li} + p, \nu \right\rangle + \sum_{\mu} \int \mathrm{d}r \gamma_{\mu}(r) \hat{A}_{\mu} \left|^{7} \mathrm{Be} + n, \mu \right\rangle$$

- \blacktriangleright 3 NCSM calculations: $^7\mathrm{Li},\,^7\mathrm{Be}$ and $^8\mathrm{Be}$
- ► {³/₂⁻, ¹/₂⁻, ⁷/₂⁻, ⁵/₂⁻, ⁵/₂⁻} ⁷Li and ⁷Be states in cluster basis
- 15 positive and 15 negative parity states in ⁸Be composite state basis

TUNL Nuclear Data Evaluation Project

Input States from NCSM

$$\Psi_{\mathsf{NCSMC}}^{(8)} = \sum_{\lambda} c_{\lambda} \left|^{8} \mathrm{Be}, \lambda \right\rangle + \sum_{\nu} \int \mathrm{d}r \gamma_{\nu}(r) \hat{A}_{\nu} \left|^{7} \mathrm{Li} + p, \nu \right\rangle + \sum_{\mu} \int \mathrm{d}r \gamma_{\mu}(r) \hat{A}_{\mu} \left|^{7} \mathrm{Be} + n, \mu \right\rangle$$

- \blacktriangleright 3 NCSM calculations: $^7\mathrm{Li},\,^7\mathrm{Be}$ and $^8\mathrm{Be}$
- ► {³/₂⁻, ¹/₂⁻, ⁷/₂⁻, ⁵/₂⁻, ⁵/₂⁻} ⁷Li and ⁷Be states in cluster basis
- 15 positive and 15 negative parity states in ⁸Be composite state basis

Interaction: Chiral NN N³LO + 3N(InI)

- Good description of excitation energies in light nuclei
- ► Hamiltonian determined in *A* = 2, 3, 4 systems
 - ▶ Nucleon-nucleon scattering, deuteron, ³H, ⁴He

NN N³LO (Entem-Machleidt 2003) 3N N²LO w local/non-local regulator

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,^{1,*} P. Navrátil⁰,^{2,†} F. Raimondi,^{3,4,‡} C. Barbieri⁰,^{4,3} and T. Duguet^{1,5,1}

Convergence of ground state energies:

