

First Measurements of the Quadrupole Moment of the 2₁⁺ State and B(E2) Value of the 4⁺ State in ¹¹⁰Sn from Coulomb Excitation

Joochun (Jason) Park

Center for Exotic Nuclear Studies, IBS

14th International Conference on Nucleus-Nucleus Collisions

Aug. 21, 2024

Physics motivation

Enhanced B(E2) values in light Sn isotopes towards ¹⁰⁰Sn, compared to expectations based on simple seniority scheme

- Isospin-dependent effective charges?
- Quasiparticle phonon model?
- Proton core excitation?

MCSM: huge model space for proton and neutron $g_{9/2}, g_{7/2}, d_{5/2}, d_{3/2}, s_{1/2}, h_{11/2}, f_{7/2}, p_{3/2}$ orbitals above ⁸⁰Zr $(e_{\pi}, e_{\nu}) = (1.25, 0.75)$, TBME's from JUN45/SNBG3

MCSM reproduces B(E2) trend via strong proton core \sim excitation which peaks at ¹¹⁰Sn, with oblate deformation predicted for 2₁⁺

T. Togashi et al., PRL 121, 062501 (2018)

Pairing-quadrupole interplay in Sn?

Experiments at CERN-ISOLDE

Spallation of 1.4-GeV protons from PS booster on LaC_x target, transport through GPS Isobaric contamination (^{106,108,110}In) suppressed with Resonance Ionization Laser Ion Source (RILIS)

Final isobaric contamination level: $R(^{110}In/^{110}Sn) \approx 1-2\%$ $R(^{108}In/^{108}Sn) \approx 10\%$ $R(^{106}In/^{106}Sn) \approx 50\%$

Post-acceleration at HIE-ISOLDE: 4.4-4.5 MeV/u for Coulex and 8.0 MeV/u for (d,p) transfer experiments

2 dedicated campaigns

<u>IS562</u>: Coulex of ^{106,108,110}Sn with Miniball (completed)

<u>IS686</u>: (d,p) transfers on ^{106,108,110}Sn with ISOLDE Solenoidal Spectrometer (ongoing)

The Miniball spectrometer setup

Segmented HPGe detectors for Doppler correction following Coulex reactions

24 HPGe crystals ×
6 segments =
144 unique γ-ray
detection angles

²⁰⁶Pb target, 4.2-4.7 mg/cm²

N. Warr et al., EPJA 49, 40 (2013)

 $E_{beam} = 4.4-4.5 \text{ MeV/u}$

Just below safe-energy threshold for ^{106,108,110}Sn + ²⁰⁶Pb combination

4-quadrant DSSSD with 16×16 rings and sectors for beam/particle scattering angles

New Coulex statistics for 106,108,110Sn

3 experiments for ¹¹⁰Sn (2016), ¹⁰⁸Sn (2017), and ¹⁰⁶Sn (2018) **20-50** increase in statistics with heavier target and E_{heam} : ⁵⁸Ni (2.8 MeV/u) \rightarrow ²⁰⁶Pb (4.4 MeV/u) Excitations to 4₁⁺ states observed for the first time in safe-energy Coulex

6

Record γ -ray statistics for ¹¹⁰Sn, additional γ - γ coincidence at 1243 keV to 4₂⁺ state observed

Little evidence of excitations to other states in ¹¹⁰Sn, ²⁰⁶Pb

1246-keV γ from 3⁻₁ state in ¹¹⁰Sn ruled out; 262-keV side branch unobserved

Combined Coulex-DSAM analysis for B(E2)

$T_{1/2}$ analysis with DSAM simulation including cascade decays

Feeding from long-lived 4_1^+ state taken into account, minor contribution from 4_2^+ also

Simulated spectra normalized to experiment within χ^2 evaluation ranges

Correlated $T_{1/2}$ analysis of 4_1^+ and 2_1^+ states

Combined GOSIA-GOSIA2 analysis

Standalone GOSIA2 analysis not applicable due to multi-step Coulex to higher states in ¹¹⁰Sn

Iterative GOSIA-GOSIA2 approach applied

5 subdivisions of γ -ray yield data for B(E2) vs Q(2₁⁺)

Comparisons with shell model calculations

 $\Delta B(E2)/B(E2) \approx 4\%$ for 2_1^+ , down from 10% Little discrepancy with different SM's

B(E2; $4_1^+ \rightarrow 2_1^+$) = \begin{cases} **203(33)** $e^2 fm^4 (Coulex) \\$ **218^{+87}_{-65} e^2 fm^4 (T_{1/2})
\end{cases}**

B(E2; $4_2^+ \rightarrow 2_1^+$) = **237(59)** e²fm⁴

Small B(E2; $4_1^+ \rightarrow 2_1^+$) for ¹¹⁰Sn, closer to ^{112,114}Sn than ^{106,108}Sn Pairing effects quenching B(E2) of B(E2; $4_1^+ \rightarrow 2_1^+$)?

 $Q(2_1^+)$ of ¹¹⁰Sn the largest among known isotopes, oblate shape consistent with MCSM and I.3.4

Q magnitudes overestimated by MCSM, large contributions from e_pQ_p and e_nQ_n

Important to measure $Q(2_1^+)$ of lighter Sn, shape change to prolate predicted for A \leq 108

Data analysis for ^{106,108}Sn underway

Summary and outlook

Coulomb excitation of ¹¹⁰Sn on ²⁰⁶Pb at HIE-ISOLDE

- Most precise B(E2) for 2₁⁺
- New B(E2) measurements for 4_1^+ and 4_2^+ , pairing effects eroding quadrupole collectivity
- First determination of Q(2₁⁺) in the light unstable Sn, oblate shape in agreement with MCSM and SM predictions
- To be submitted soon!

Follow-up studies of B(E2) and $Q(2_1^+)$ systematics with ^{106,108}Sn

- Improved precision on B(E2), new Q(2_1^+) and B(E2; $4_1^+ \rightarrow 2_1^+$) expected
- DSAM simulations for independent B(E2) measurements and comparisons

IS562 experiment campaign and Miniball collaborators:

J. Park^{a,b}, J. Cederkäll^{a,*}, C. Fahlander^a, P. Golubev^a, A. Knyazev^a, A. Lopez^a, E. Rickert^a, J. Snäll^a, A. N. Andreyev^{c,d}, J. Konki^c, A. Welker^c,
K. Wrzosek-Lipska^e, A. Gawinek^e, J. Iwanicki^e, M. Saxena^e, G. de Angelis^f, L. P. Gaffney^g, Th. Kröll^h, C. Henrich^h, T. Habermann^h, M. Schilling^h,
M. Seidlitz^h, C. Stahl^h, K. Arnswaldⁱ, A. Blazhevⁱ, P. Reiterⁱ, D. Rosiakⁱ,
N. Warrⁱ, S. Saha^j, G. Rainovski^k, R. Zidarova^k, C. Raison^d, A. Boukhari^{c,l},
L. Barber^m, D. M. Cullen^m, B. S. Nara Singh^m, C. Bergerⁿ, C. Bernerⁿ,
R. Gernhäuserⁿ, L. Wernerⁿ, M. J. G. Borge^{c,o}, J. Díaz Ovejas^o, O. Tengblad^o,
S. Viñals^o, T. Berry^p, D. M. Cox^{q,r}, A. Görgen^s, T. W. Johansen^s, G. Tveten^s,
A. Illana^{f,q,t}, M. Stryjczyk^t, P. Van Duppen^t, H. De Witte^t, J. J. Valiente-Dobón^u

INPC 2025

I E E E

International Nuclear Physics Conference May 25-30 Daejeon, Republic of Korea

STAY TUNED and WELCOME!

Safe-energy Coulex experiment design details

- Electromagnetic excitation between projectile (beam) and target nucleus through Coulomb field
- Detection of γ rays and Doppler correction using kinematics ($\beta = v/c$), θ_{γ} , θ_{p} and θ_{t}
- Nuclear excitation can be separated from pure electromagnetic interaction at "safe" Coulex energy:

$$E_{\text{safe}} = 1.44 \frac{A_p + A_t}{A_t} \frac{Z_p \cdot Z_t}{1.25(A_p^{1/3} + A_t^{1/3}) + 5} \text{MeV}_{\text{K. Ald}}$$

K. Alder and A. Winther, *Electromagnetic Excitation* (1975)

Coulex experiments performed at HIE-ISOLDE using ²⁰⁶Pb target ($Z_t = 82$, $A_t = 206$)

Ζ _p	A _p	E _{safe} (MeV)	E _{safe} /A _p (MeV)	E _{exp} /A _p (MeV), year
50	110	493	4.48	4.40 (2016)
50	108	491	4.54	4.50 (2017)
50	106	489	4.61	4.40 (2018)

DSAM simulation with Geant4

Event selection cut: Low θ_{lab} for ²⁰⁶Pb, more ¹¹⁰Sn stopped inside target \rightarrow better sensitivity for DSAM

Stopping power of ²⁰⁶Pb calculated with SRIM

10% systematic uncertainty in $\rm T_{1/2}$

DSAM simulation for $T_{1/2}$ of ²⁰⁶Pb

Literature T_{1/2}: 9.1(6) ps: J. L. Quebert *et al.*, Nucl. Phys. A 150 (1970) 68 12(3) ps: D. Ralet *et al.*, Phys. Lett. B 797 (2019) 134797