

Probing ¹¹Be Structure with Transfer Reactions in the AT-TPC

Michael (Zach) Serikow NN2024

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE -SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Motivation

- Experiments disagree on parity of fourth excited state with J = 3/2 at 3.40 MeV
- Physics goal: determine the parity of this state from its angular distribution
- <u>Experimental goal</u>: demonstrate capability to measure transfer reactions in inverse kinematics in AT-TPC
 - Have since measured ⁶C+d, ¹⁶C+p, ¹⁵C+d, ¹⁵C+p, ¹²Be+p, and ⁷Be+d at around 12 MeV/u

AT-TPC

- <u>A</u>ctive <u>Target</u> <u>Time</u> <u>Projection</u>
 <u>C</u>hamber
- 250 liters (1 m long by 55 cm wide)
- Oriented on beam axis
- Electrons produced in gas drift towards sensor plane perpendicular to beam
- Central beam region blind from reduced electron gain or hole in pad plane depending on experiment

SOLARIS solenoid

- AT-TPC placed inside large-bore MRI solenoid
- SOLARIS solenoid can go up to 4 Tesla
- Curve trajectories of scattered particles
 - Increase their trajectory length and measure their range
 - Measure their magnetic rigidity

¹⁰Be(*d*,*p*) in the AT-TPC

- ¹⁰Be beam from the ReA6 linac
 - Energy of 9.6 MeV/u
 - Rate of ≈ 1-2k Hz
 - Contamination of ¹⁰B and ¹⁵N
- AT-TPC filled with 600 Torr of pure deuterium gas
- SOLARIS solenoid set to 3 Tesla
- Small ion chamber placed upstream of the AT-TPC
- Trigger set on mesh signal with signal suppression in beam region
- Ran for 120 hours

AT-TPC analysis with Spyral

- Newly developed Python AT-TPC analysis package
 - Designed by local FRIB AT-TPC group, spearheaded by postdoc Gordon McCann
- Highlights:
 - Installable Python package
 - Flexible pipeline design
 - Cross-platform
 - Parallelized to analyze large datasets
 - Comprehensive documentation

https://github.com/ATTPC/Spyral

AT-TPC analysis with Spyral

Z. Serikow, NN2024, August 2024, Slide 7

Reaction channel selection

- Based on identification of incoming beam particle from IC
- Identification of target residue using Bp and energy loss

¹⁰Be(*d*,*p*)

1.78 MeV (5/2+)

¹⁰Be(*d*,*p*) angular distributions

Zwieglinski, B. *et al.* Study of the ¹⁰Be(d, p)¹¹Be reaction at 25 MeV. *Nuc. Phys. A* **315**, 124 (1979)

¹⁰Be(*d*,*p*) angular distributions

- No-core shell model ab initio calculations of 3.4 MeV state by M. Caprio *et al.* show rotational structure
- If $J^{\pi}=3/2^{-}$, predicted to be rotational band head
- If J^π=3/2⁺, predicted to be rotational "halo" band member

Acknowledgements

- Daniel Bazin, Gordon, McCann, Nabin Rijal, Jie Chen, Wolfgang Mittig, Saul Beceiro-Novo, Yassid Ayyad, Clementine A Santamaria
- This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grant DE-SC0020451.

Equations for determining spin/parity

1. $\pi_i \pi_f = (-1)^l$

2. $|J_i - |l - 1/2|| \le J_f \le J_i + l + 1/2$

Analysis pipeline

Pros/cons of active targets

Pros

- Target thickness and resolution no longer compete as in passive targets
- Very large solid angle coverage (essentially 4π)
- Light nuclear probes are naturally gas at room temperature, so they are used in their purest form in active targets $_{\text{*}}$ p, d, t, $^{3}\text{He},$ α

Cons

- Usually must use low intensity beams
- Target gas properties are not always great for a detector gas
- Triggers are tricky
- Complex data analysis

Slide adapted from "D. Bazin, *Why active targets? What is all the buzz about?*, Personal communication, 2021. Presentation given at ECT 2021 summer school."

E20009 Trigger

Zwieglinksi, B. et al. excitation spectrum

Fig. 1. Spectrum of protons from the ¹⁰Be(d, p)¹¹Be reaction at the deuteron energy $E_d = 25$ MeV and the laboratory angle $\theta_{lab} = 10^{\circ}$. The arrow marks the expected position of the proton group to the 2.69 MeV state in ¹¹Be.

Fitting spectrum

