14th International Conference on Nucleus-Nucleus Collisions (NN2024)

Contribution ID: 1

Type: Contributed Oral

Lifetime Measurement of the 0^+_3 State in 120 Sn

Monday, 19 August 2024 17:35 (15 minutes)

The semi-magic ${}_{50}^{120}$ Sn₇₀ lies in the neutron mid-shell among the other stable Sn isotopes, where 2p - 2h intruder configurations built on excited 0^+ states have been recently observed. However, the transition rates from the 0_3^+ state in 120 Sn are not well-known because its lifetime only has a lower limit of 6 ps, which prevents a firm assignment or exclusion of the 0_3^+ state into the intruder band.

The first thermal neutron capture experiment, ¹¹⁹Sn(n,γ^{many})¹²⁰Sn, was performed at the Institut Laue-Langevin, where the world's highest-flux thermal neutron beam was delivered at 10⁸ n/cm²/s at the target position on an isotopically enriched ¹¹⁹Sn target. Low-spin states in ¹²⁰Sn were populated up to $S_n = 9.1$ MeV, and the decaying gamma-ray cascades were detected with the Fission Product Prompt Gamma-ray Spectrometer (FIPPS) comprised of eight Compton-suppressed HPGe clovers coupled to an array of 15 LaBr₃(Ce) scintillation detectors. The LaBr₃(Ce) scintillators, which were used for gamma-ray detection and lifetime measurement using the Mirror Symmetric Centroid Difference (MSCD) method, have fast timing responses and are ideal for extracting lifetimes between 10 and a few hundred ps.

In total, there are 4×10^9 counts in the $\gamma \gamma \gamma$ cube where two LaBr₃(Ce) events were in coincidence with one HPGe. Preliminary lifetimes in ¹²⁰Sn using the MSCD technique will be reported.

Funding Agency

NSERC

Email Address

twa73@sfu.ca

Presenter if not the submitter of this abstract

Primary authors: MICHELAGNOLI, Caterina (Institute Laue-Langevin); ANDREOIU, Corina (Simon Fraser University); PETRACHE, Costel (University Paris-Saclay and IJClab, CNRS/IN2P3, 91405 Orsay, France); WU, Frank (Tongan) (Simon Fraser University); REGIS, Jean Marc (IKP University of Koeln); SPAGNOLETTI, Pietro (Simon Fraser University); KARAYONCHEV, Vasil (Argonne National Laboratory)

Presenter: WU, Frank (Tongan) (Simon Fraser University)

Session Classification: Nuclear Structure I

Track Classification: Nuclear Structure from Collisions