DE LA RECHERCHE À L'INDUSTRIE

Wolfram KORTEN IRFU - CEA Paris-Saclay

> www.cea.fr Irfu.cea.fr

Measurements of the isolated Nuclear Two-Photon decay

August, 18-23, 2024

- Nuclear two-photon (or double-gamma) decay
- Mass measurements of highly-charged ions in the Experimental Storage Ring (ESR) at GSI/FAIR
- First results for the two-photon decay in ⁷²Ge and further experiments

- The nuclear two-photon (or double-gamma) decay
- Mass measurements of highly-charged ions in the Experimental Storage Ring (ESR) at GSI/FAIR
- First results for the two-photon decay in ⁷²Ge and future experiments

DE LA RECHERCHE À L'INDUSTRIE

Electromagnetic decay in a

Electromagnetic transitions in atomic nuclei can take place as
 gamma-ray emission (according to spin/parity conservation)
 electron emission from atomic shells ("internal conversion")
 electron-positron pair creation (for AE al.022 MeV)

Rare decay mode whereby two gamma rays are simultaneously emitted

- Second order quantum mechanical process proceeds through virtual excitation of (high-lying) intermediate states Branching ratio: $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}$ usually << 10⁻⁴
- Solution Observable when first order decays are (strongly) hindered ex. $0^+ \rightarrow 0^+ E0$ decay : single γ -ray emission is forbidden virtual excitation of giant dipole resonance

$$\Gamma_{\gamma\gamma} = \frac{\omega_0^7}{105\pi} \left(\underline{\alpha_{E1}^2 + \chi_{M1}^2 + \frac{\omega_0^4}{4752} \underline{\alpha_{E2}^2}} \right)$$

Electric dipole transition polarizability Magnetic dipole transition susceptability Electric quadrupole transition polarizability

usually $\alpha_{E1} \gg \chi_{M1} \sim \alpha_{E2}$

Rare decay mode whereby two gamma rays are simultaneously emitted

- Second order quantum mechanical process proceeds through virtual excitation of (high-lying) intermediate states Branching ratio: $\Gamma_{\gamma\gamma}/\Gamma_{\gamma}$ usually << 10⁻⁴
- Observable when first order decays are (strongly) hindered ex. $0^+ \rightarrow 0^+$ E0 decay : single γ -ray emission is forbidden virtual excitation of giant dipole resonance

$$\Gamma_{\gamma\gamma} = \frac{\omega_0^7}{105\pi} \left(\frac{\alpha_{E1}^2 + \chi_{M1}^2 + \frac{\omega_0^4}{4752} \alpha_{E2}^2}{4752} \right)$$

Electric dipole transition polarizability Magnetic dipole transition susceptability Electric quadrupole transition polarizability

usually $\alpha_{E1} \gg \chi_{M1} \sim \alpha_{E2}$

First observation with the Heidelberg-Darmstadt **Crystal Ball spectrometer in 1984**

Heidelberg-Darmstadt Crystal Ball

162 Nal detectors \rightarrow moderate resolution

Solid angle > 98% \rightarrow very high efficiency

(p,p') scattering on ¹⁶O, ⁴⁰Ca and ⁹⁰Zr Scattered proton measures E* γ ray detection in (delayed) coincidence

First observation with the Heidelberg-Darmstadt Crystal Ball spectrometer in 1984

Heidelberg-Darmstadt Crystal Ball162 Nal detectors \rightarrow moderate resolutionSolid angle > 98% \rightarrow very high efficiency

First clear observation in 1984 at MPI-K HD-DA Crystal Ball (4π Nal array)

Two-Photon decay half lives in stable nuclei

Comparison of two-photon decay half lives

For low-energy 0⁺ states the partial halflife becomes very long and therefore the branching ratio becomes very small

Rare decay mode whereby two gamma rays are simultaneously emitted

- Second order quantum mechanical process proceeds through virtual excitation of (higher-lying) intermediate states
- ➢ Observable only when first order decays are (strongly) hindered ex. 0⁺ → 0⁺ E0 decay : single γ-ray emission is forbidden

0⁺ γ

 $> E_x(0^+) < 2 m_e c^2 \rightarrow no e^+e^- decay$

 $\mathsf{E}_{\gamma 1} + \mathsf{E}_{\gamma 2} = \omega = \mathsf{E}_{\mathsf{x}}(\mathbf{0}^{+})$

➢ fully stripped ions → no ce decay

Two-photon decay is the only allowed $0^+ \rightarrow 0^+$ decay in stable bare nuclei

- The nuclear two-photon (or double-gamma) decay
- Mass measurements of highly-charged ions in the Experimental Storage Ring (ESR) at GSI/FAIR
- First results for the two-photon decay in ⁷²Ge and future experiments

The SIS18 + ESR experiment at GSI

22 High resolution mass measurements in a storage ring

 $\Delta \mathbf{V}$

SCHOTTKY MASS SPECTROMETRY

Cooled Fragments

Very high precision Non destructive Slow (many seconds)

Combined Schottky + Isochronous Mass Spectrometry (S+IMS)

 $1 \Delta(m/q)$

m/q

Hot Fragments

Very fast (few ms) Good precision **Destructive method**

 $\gamma_t \rightarrow \gamma$

Cea

First ever time-resolved Schottky plus Isochronous Mass Spectroscopy (S+IMS) at the ESR

Combined Schottky plus Isochronous Mass Spectroscopy (ISMS)

New 410 MHz Schottky cavity

M. S. Sanjari et al., Rev. Sci. Instr. 91, 083303 (2020)

OF LA RECHERCHE À L'INDUSTRIE

Identification of isotopes through Schottky spectra

 All stored nuclei can be identified by their characteristic revolution frequency
 Colour code indicates different harmonics of the original revolution frequency

W. Korten - NN 2024 - August 18-23, 2024

DE LA RECHERCHE À L'INDUSTRIE

Challenges of Isochronous Mass Spectrometry

$$\frac{\Delta f}{f} = -\frac{1}{\gamma_t^2} \frac{\Delta(m/q)}{m/q} + \frac{\Delta v}{v} \left(1 - \frac{\gamma^2}{\gamma_t^2}\right)$$

 γ_t is not constant with B ρ , but depends on the orbit in the ESR

need to limit B_ρ acceptance
good mass resolution for limited B_ρ range

Advantages: non-destructive detection – enables lifetime studies no restriction of acceptance single-ion sensitivity

Combined Schottky plus Isochronous Mass Spectroscopy (ISMS)

Schottky spectrum for a single event

Frequency

- The nuclear two-photon (or double-gamma) decay
- Mass measurements of highly-charged ions in the Experimental Storage Ring (ESR) at GSI/FAIR
- Results for the two-photon decay in ⁷²Ge and future experiments

Observation of a very short-lived isomer in ⁷²Ge^m

W. Korten - NN 2024 - August 18-23, 2024

Comparison of two-photon decay half lives

Two-photon decay in ⁷²Ge substantially faster than expected Need to determine electric dipole polarizabilities $\alpha^2(E1,E2,)$ and magnetic dipole susceptibility $\chi^2(M1)$

How to determine the nuclear matrix elements ?

$$\sum_{i} \frac{\langle 0_1^+ || M(\sigma L) || I_i^\pi \rangle \langle I_i^\pi || M(\sigma L) || 0_2^+ \rangle}{E_i - \frac{1}{2} \Delta E_{12}}$$

For selected 1[±] states (with large branching):

 $\left\langle 0_1^+ \left| |M(\sigma 1)| \right| 1_i^{\pm} \right\rangle \left\langle 1_i^{\pm} | \left| M(\sigma 1) \right| | 0_2^+ \right\rangle$

Bow to determine the nuclear matrix elements ?

Experiment with the Clover Array at HlγS B. Crider, A.D. Ayangeakaa, E. Peters et al. April 2024

Nuclear Resonance Fluorescence $\Gamma_0 \sim B(\sigma L; 0_1 \rightarrow 1^{\pm}) \quad E_x^{2L+1}$ $\Gamma_{\rm f} \sim {\sf B}(\sigma{\sf L}; 1^{\pm} \rightarrow 0_2) \ ({\sf E}_{\rm x} - {\sf E}_{\rm f})^{2{\sf L}+1}$ 1_{i}^{\pm} Ex Γ_f Γ<mark>0</mark>-Γf Γ₀ 0^{+}_{2} E_f 0_{1}^{+}

For selected 1[±] states (with large branching): (0+1)(1+1)(1+1)(1+1)(1+1)(0+1)

 $\left\langle 0_1^+ \left| |M(\sigma 1)| \right| 1_i^{\pm} \right\rangle \left\langle 1_i^{\pm} | M(\sigma 1)| |0_2^+ \right\rangle$

How to determine the nuclear matrix elements ?

Experiment with the Clover Array at HlγS B. Crider, A.D. Ayangeakaa, E. Peters et al. April 2024

Decay of $I^{\pi}=1^+$ state at 3.895 MeV

New ESR experiments on ⁹⁸Mo and ⁹⁸Zr (May 2024)

¹⁰⁰Mo at ~460 A.MeV, ~10⁹ ions per spill (every 2-5s), online results

96Mo	97Mo	98Mo	9 9Mo	<u>100м</u> ₀ -2n
95Nb	96Nb	97Nb	98Nb	99Nb
94Zr	95Zr	96Zr	97 Z r	98Zr

- ➤ The 0⁺→ 0⁺ EO decay to the ground state in even-mass isotopes may proceed via nuclear two-photon decay.
- The competing first-order decays (internal electron conversion or internal pair conversion) can be be eliminated for low-energy decays (<1.022 MeV) in bare nuclei.</p>
- > Combined Schottky and Isochronous Mass Spectroscopy (ISMS) was demonstrated to measure short-lived isomers (>few ten ms) down to low energies of ~100 keV at A~70 $\rightarrow \frac{\Delta M}{M} < 2 \ 10^{-6}$
- ➢ Partial halflife of the two-photon decay of the 0⁺ isomer in ⁷²Ge T_{1/2}=25(2) ms → much faster than expected → Direct search for double-γ decay in ⁷²Ge using (p,p') reaction planned
- > Follow-up experiment on ${}^{98}Mo$ & ${}^{98}Zr$ performed at GSI in May 2024 \rightarrow Very promising new technique for 0⁺ isomer searches at FAIR