14th International Conference on Nucleus-Nucleus Collisions (NN2024)

Contribution ID: 168

Type: Contributed Oral

Study of Intruder States towards ⁷⁸Ni with Lifetimes Measurements Following ⁸²Se(d,p)⁸³Se

Tuesday, 20 August 2024 15:30 (15 minutes)

Intruder states that originate from the promotion of neutrons across the N=50 shell gap are observed along the N=49 isotones (⁷⁹Zn, ⁸¹Ge, ⁸³Se, ⁸⁵Kr), with the lowest energy in ⁸³Se. The reduction of the N=50 shell gap towards ⁷⁸Ni favors the lowering in the energy of these states. Moreover, since the ⁸³Se nucleus (Z=34) is in the middle of the proton fp-shell (28<Z<40), it should have the maximum quadrupole correlations, lowering further the energy of these deformed configurations. This makes ⁸³Se a good candidate for understanding the collectivity of the particle-hole intruder states in this region. Such information could also be used as a testing ground for theoretical models aiming to describe the region in the vicinity of ⁷⁸Ni.

The nucleus of interest was populated using a (d,p) reaction in a recent experiment performed at the Laboratori Nazionali di Legnaro. The GALILEO γ -ray array at the phase II configuration was coupled to the SPIDER silicon array, allowing one to obtain the needed channel selectivity through coincidence measurements between γ rays and the protons from the (d,p) reaction. This work reports on the lifetime of the 540-keV 1/2⁺ and 1100-keV 3/2⁺ intruder states of ⁸³Se measured by using the Recoil Distance Doppler-Shift method (RDDS) and Doppler-Shift Attenuation Method (DSAM), respectively. The experimental outcome will be discussed in the framework of shell-model calculations and mean-field approaches. The present results challenge current theoretical models in this region.

Funding Agency

Email Address

julgen.pellumaj@lnl.infn.it

Presenter if not the submitter of this abstract

Primary authors: GOTTARDO, Andrea (INFN-LNL); VALIENTE DOBON, Jose Javier (INFN-LNL); PEL-LUMAJ, Julgen (INFN-LNL, University of Ferrara,)

Presenter: PELLUMAJ, Julgen (INFN-LNL, University of Ferrrara,)

Session Classification: Nuclear Structure II

Track Classification: Nuclear Structure from Collisions