Heavy-Ion Collisions and the low-density Neutron Star Equation of State: from the lab. to space.

"Valid treatment of the correlations and clusterization in low density matter"

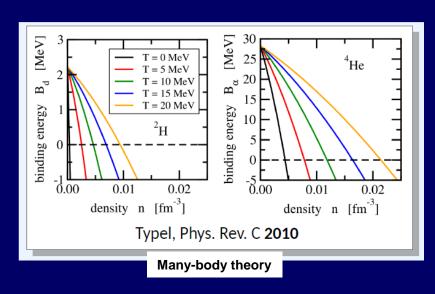
Tiago Custódio¹, Alex Rebillard-Soulié², Rémi Bougault², Diégo Gruyer², Francesca Gulminelli², Tuhin Malik¹, Helena Pais¹, and Constança Providência¹
¹ CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal.
² Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, F-14000 Caen, France.

"Valid treatment of the correlations and clusterization in low density matter"

In-medium effects:

Surrounding nuclear medium modify light cluster properties.

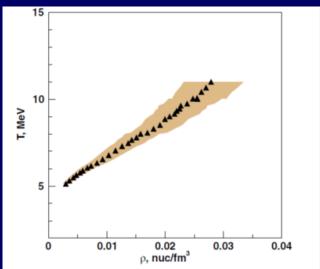
Implication for core-collapse supernovae dynamics: modification of light clusters can affect the neutrinos and shock wave propagation Arcones et al. PRC, 2008



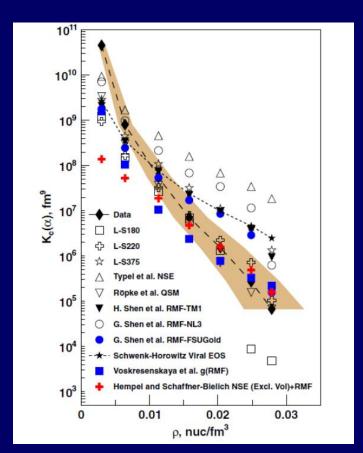
Cluster formation modify the EOS at subsaturation density

Texas A&M: equilibrium constant, K_c

Using Heavy-lon collisions corresponding to central events and selecting mid-rapidity region: It is possible to select events corresponding to different thermodynamical characteristics of a gas of nucleons and clusters.



Low densities

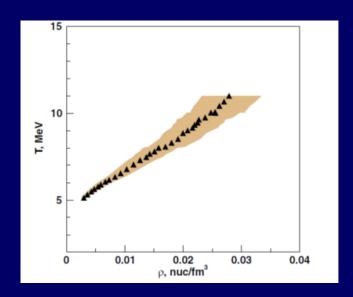


Data versus Model: in-medium effects (the properties of nucleons in clusters do not correspond to the properties of free nucleons).

How to evaluate T and ρ ?

Equilibrium – Ideal gas

- S. Das Gupta and A.Z. Mekjian Phys. Rep. 72 (1981) 131
- S. Albergo et al. Nuovo Cimento 89 (1985) 1



For each evolution interval (Coulomb corrected particle velocity):

1- Temperature: from Yields (²H ⁴He)/(³H ³He)

$$T = \frac{B(4,2) + B(2,1) - B(3,2) - B(3,1)}{\ln(\sqrt{9/8}(1.59 \ R_{v_{surf}}))} MeV \text{ with } R_{v_{surf}} = \frac{M(2,1)M(4,2)}{M(3,1)M(3,2)}$$

2- Neutrons: from Yields (3H/3He)

$$(N/Z)_{free} = \frac{M(3,1)}{M(3,2)} e^{((B(3,2)-B(3,1))/T)}$$

3- Momentum space density Power law:

$$\frac{d^3M(A,Z)}{d^3p_A} = R_{np}^N \frac{(2s+1) e^{B(A,Z)/T}}{2^A} \left(\frac{b^3}{V_0}\right)^{A-1} \left(\frac{d^3M(1,1)}{d^3p}\right)^A$$

Cluster momentum spectrum versus (proton momentum spectrum)^A (neutron spect. = proton spect., Coulomb correction)

VOLUME measurement → DENSITY

What is equilibrium constant, K_c?

Law of mass action (Guldberg et Waage)

Equilibrium, same phase.

$$\alpha A + \beta B \leftrightarrow \gamma C + \delta D$$

 Constant Kc is relative to concentrations and stoichiometric coef.

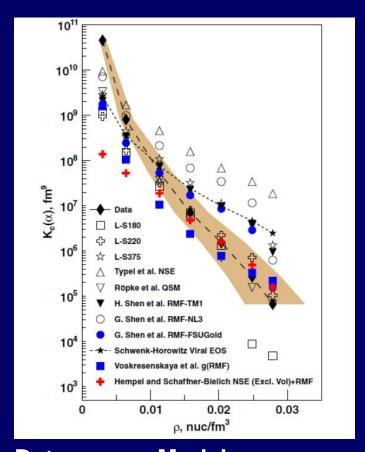
$$K_c = ([C]^{\gamma}.[D]^{\delta})/([A]^{\alpha}.[B]^{\beta})$$

For a gas of protons & neutrons in equilibrium with clusters,

$$Z_1^1H + (A - Z)_0^1n \leftrightarrow {}_Z^AX$$

$$K_c(A, Z) = \frac{\rho(A, Z)}{\rho_p^Z \rho_n^{(A-Z)}}$$

The equilibrium constant is a universal characteristics

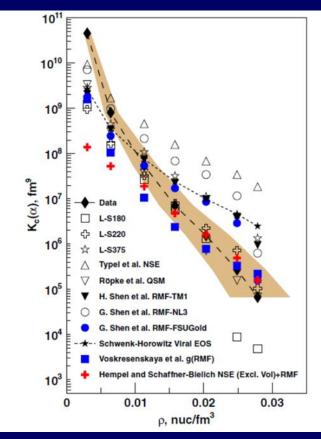


Data versus Model:

in-medium effects (the properties of nucleons in clusters do not correspond to the properties of free nucleons).

What is wrong from our viewpoint

In-medium effects



L. Qin et al. PRL108 (2012) 172701

Equilibrium – Ideal gas

1- Temperature: from Yields (²H ⁴He)/(³H ³He)

$$T = \frac{B(4,2) + B(2,1) - B(3,2) - B(3,1)}{\ln(\sqrt{9/8}(1.59 \ R_{v_{surf}}))} MeV \text{ with } R_{v_{surf}} = \frac{M(2,1)M(4,2)}{M(3,1)M(3,2)}$$

2- Neutrons: from Yields (3H/3He)

$$(N/Z)_{free} = \frac{M(3,1)}{M(3,2)} e^{((B(3,2)-B(3,1))/T)}$$

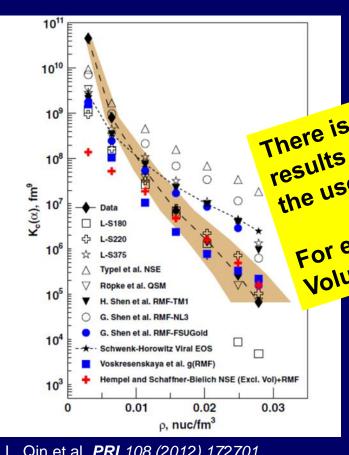
3- Momentum space density Power law:

$$\frac{d^3M(A,Z)}{d^3p_A} = R_{np}^N \frac{(2s+1) e^{B(A,Z)/T}}{2^A} \left(\frac{h^3}{V_0} \right)^{A-1} \left(\frac{d^3M(1,1)}{d^3p} \right)^A$$

Cluster momentum spectrum versus (proton momentum spectrum)^A (neutron spect. = proton spect., Coulomb correction)

What is wrong from our viewpoint

In-medium effects



Equilibrium - Ideal gas

There is a fundamental contradiction between the results indicating that there are in-medium effects and

For example, the used Binding Energies to extract the the use of ideal gas formulae. For example, the used purding Binding Energies

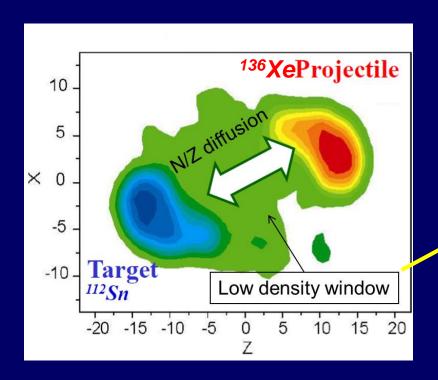
$$\frac{d^3M(A,Z)}{d^3p_A} = R_{np}^N \frac{(2s+1) e^{B(A,Z)/T}}{2^A} \left(\frac{h^3}{V_0}\right)^{A-1} \left(\frac{d^3M(1,1)}{d^3p}\right)^A$$

Cluster momentum spectrum versus (proton momentum spectrum)^A (neutron spect. = proton spect., Coulomb correction)

To solve this contradiction, two "tools":

- Another set of data
- Relativistic Meam-Field Model because the only way to highlight in-medium effects is to use a model (the data cannot speak for themselves).

INDRA data



STUDY of a Gas composed of light clusters formed in central collisions

INDRA@GANIL

136,124Xe+124,112Sn 32 A MeV

Relativistic Mean-Field with clusters

RMF formalism

- With nucleons and light clusters as independent quasi-particles
- In-medium effets of light clusters are taken into account.
- The interactions are mediated by the exchange of virtual mesons: the isoscalar-scalar σ -meson, the isoscalar-vector ω -meson, the isovector-vector p-meson.

$$\mathcal{L} = \sum_{\substack{j=n,p,\ ^2\mathrm{H,}^3\mathrm{He,}^4\mathrm{He}}} \mathcal{L}_j + \sum_{m=\sigma,\omega,\rho} \mathcal{L}_m + \mathcal{L}_{\omega\rho}$$
 Lagrangian:
1. n,p and clusters mesons interaction
2. Meson fields
3. Mixed meson term (ω and ρ mesons)

- Mixed meson term (ω and ρ mesons)

The meson-cluster couplings are:

$$g_{\omega j} = A_j \, g_{\omega N}$$

$$g_{\sigma j} = x_s A_j g_{\sigma N}$$

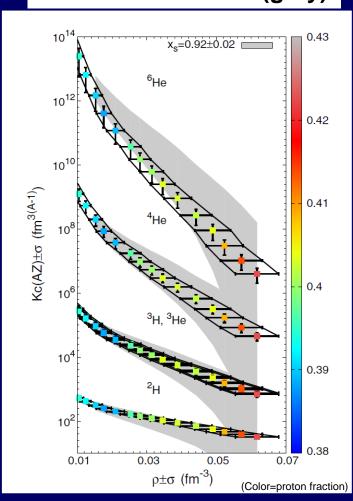
- $g_{\omega j}=A_j\,g_{\omega N}$ Cluster « j » relative to Nucleon couplings: A $_{\rm j}$ is cluster Mass X $_{\rm s}$, the coupling ratio, measures the in-medium modification of the cluster properties.

 $X_s=1$ meams no in-medium effects, $X_s<1$ meams in-medium effects.

X_s(density, Temperature) is calibrated on experimental data.

Result of the analysis

INDRA versus RMF (grey)



Introducing a correction factor to Ideal Gas formulae.

The correction factor represents a modification of the cluster binding energies due to the presence of the medium and is set so that $V_f(^6He)=V_f(^4He)=V_f(^3He)=V_f(^3H)=V_f(^2H)$ (which is not the case for "pure" Ideal Gas)

But....

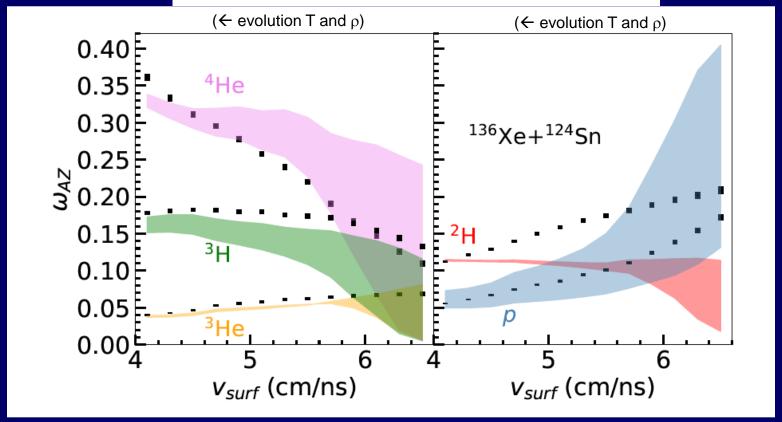
This attempt is, in a sense, an attempt to save "Private Ideal Gas". This leads to a modified Ideal Gas formulation.

Let's go back to the only measurement we have: particle multiplicities or mass fractions because K_c and densities are not directly measured.

The Mass Fractions

For RMF results which reproduce the Equilibrium Constants

INDRA (points) versus RMF (color areas)



Big disagreement for ²H, disagreement for ⁴He, ³H (same conclusion with « pure » Ideal Gas formulae)

Back to experimental data

We used measured mass fractions and RMF predictions

For each evolution (T,ρ) bin (V_{surf}) and each system $(^{124,136}Xe+^{124,112}Sn)$, independent Bayesian inferences on the measured mass fractions were carried out.

Independent posterior distributions of the model parameters θ = (T, ρ , x_s) were obtained.

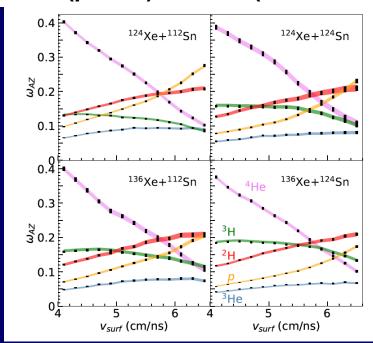
Marginalised posterior obtained by integrating on T, ρ and x_s

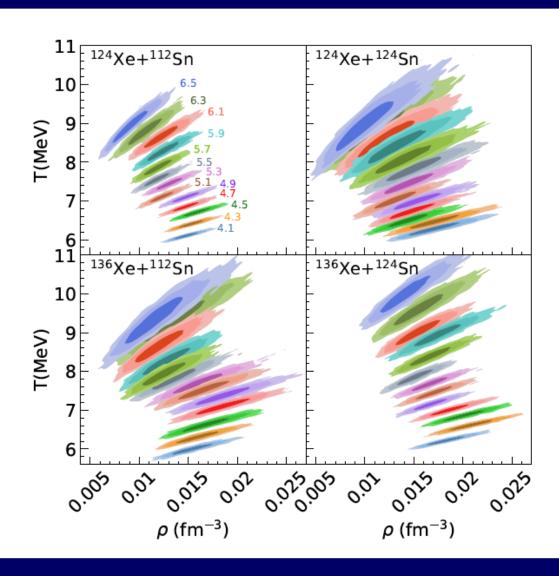
$$p_i(\theta|\{\omega_{AZ}\}) = \frac{p_{\theta}}{\mathcal{Z}}\mathcal{L}_{g}(\{\omega_{AZ}\}_i|\theta)$$

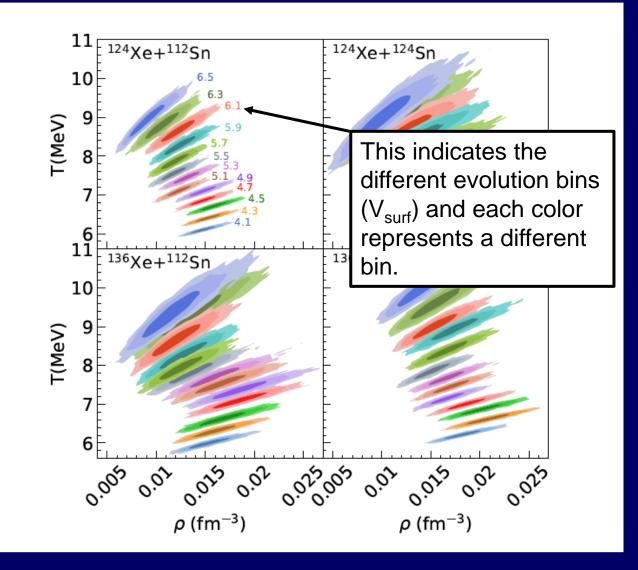
where p_{θ} is a flat prior and L_g is a gaussain likehood.

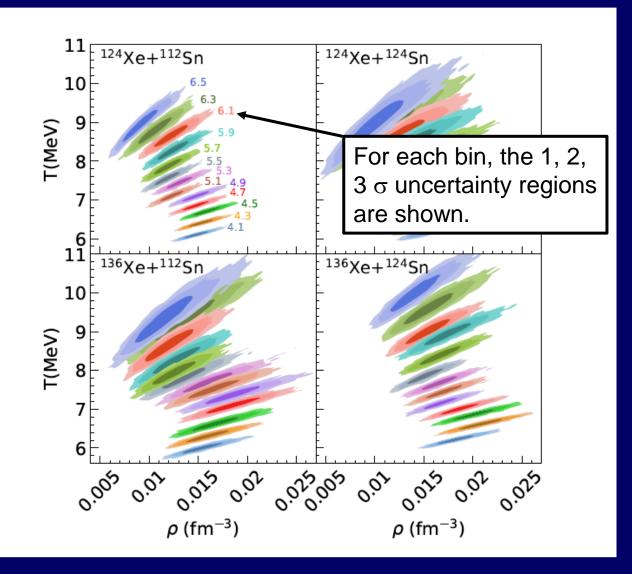
Calibration using Mass Fractions
Marginalised posteriors versus INDRA data
(2 σ uncertainties)

INDRA (points) vs RMF (color area)

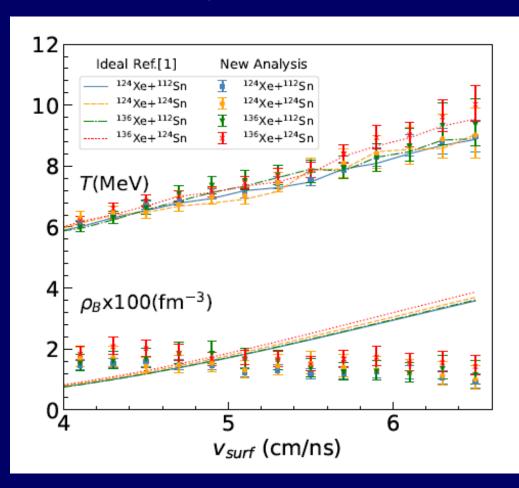








Mean values (points: Bayesian, lines Ideal Gas)

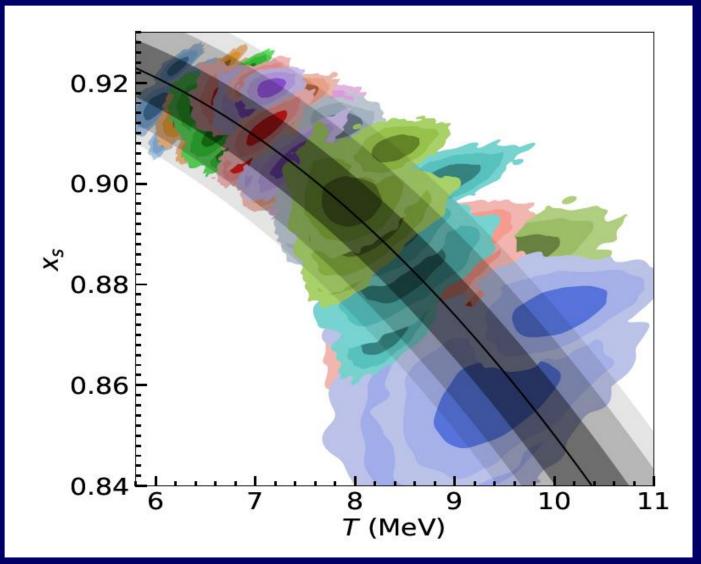


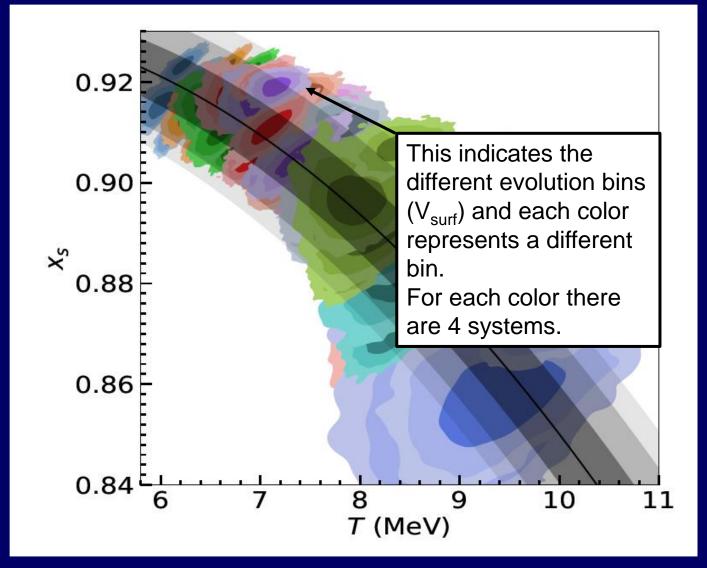
Conclusions:

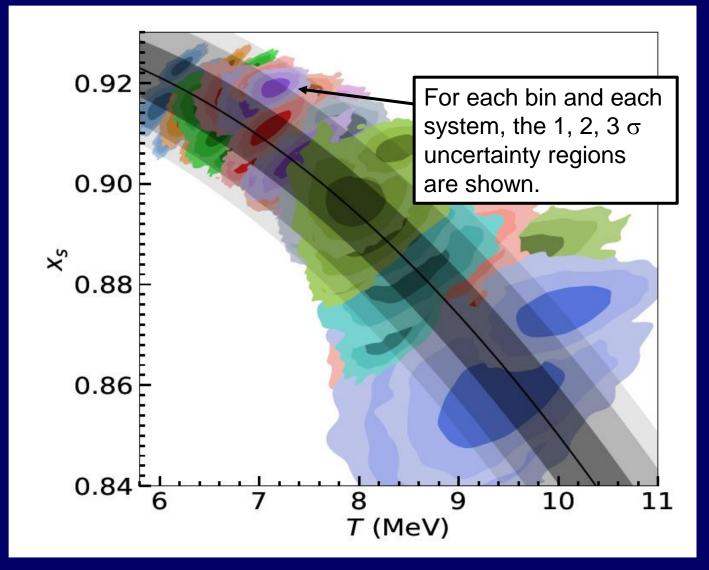
 Temperature using Ideal Gas formula is ok (in-medium effects disappear as a result of the subtraction of binding energies)

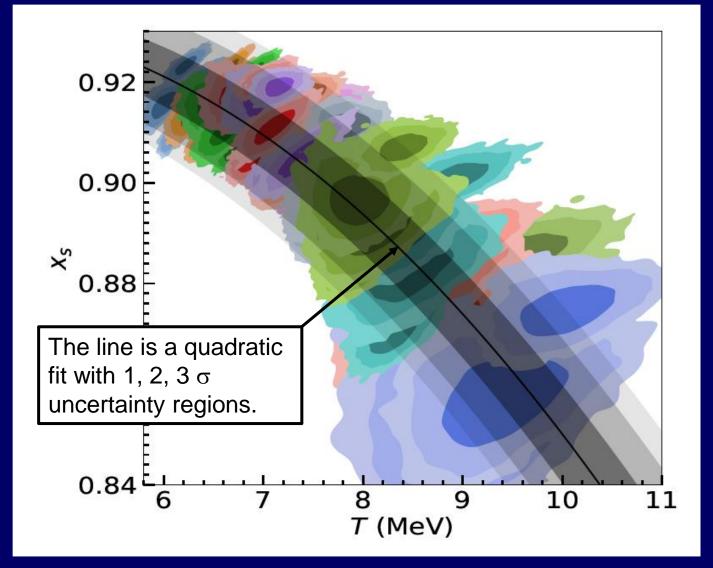
$$T = \frac{B(4,2) + B(2,1) - B(3,2) - B(3,1)}{\ln(\sqrt{9/8}(1.59~R_{v_{surf}}))} MeV \text{ with } R_{v_{surf}} = \frac{M(2,1)M(4,2)}{M(3,1)M(3,2)}$$

• Density is almost constant (0.015 fm⁻³) contrary to previous analysis (Ideal gas).









Conclusions

- The INDRA data give information on a single value of the baryonic density (0.015 fm⁻³).
- The INDRA data are then compatible with the « freeze-out » picture with selected ensembles corresponding to different temperatures.
- The cluster-σ-meson coupling is temperature dependent: weaker when the temperature increases in agreement with microscopic quantum statistical calculations.

A new experiment has been performed (INDRA/FAZIA)

to validate our conclusions with new data corresponding to quasi-projectile vaporization using Ar+Ni 74 A MeV collisions. The results will be available soon.

The start of my professional career (1983)



ATOMIC ENERGY OF CANADA LIMITED N9 90971 36 SINGLE TRIPS DEEP RIVER CRNL EMPLOYEES ONLY	31	23	173	13	7	1
	32	25	20	14	19	0
	32	27	2	15	13	0
	34	23	22	16	10	A.
	3,2	29	23	17.	71	Ó
	36	30	24	19	10	6

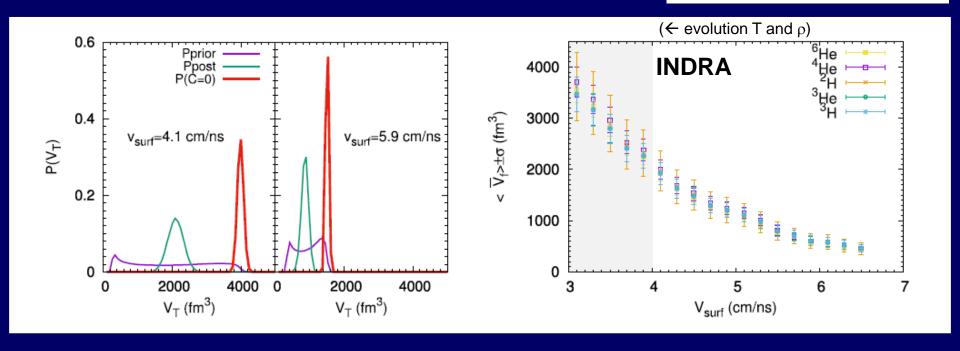
Thank you AECL/EACL CANADA

RESERVES

Attempt to resolve the contradiction

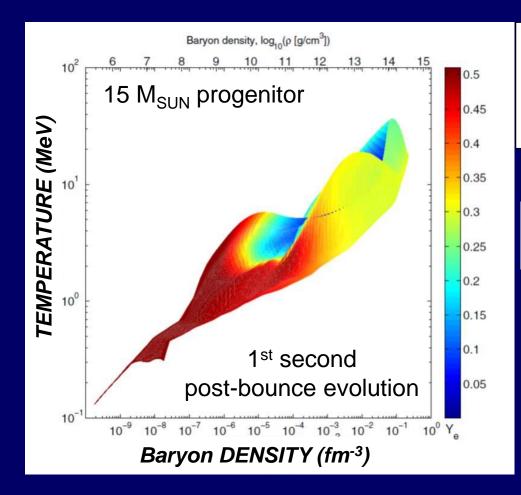
Correction factor for the Volume formulae (4 parameters): $C_{AZ}(\rho_B, y_p, T) = \exp$

$$C_{AZ}(\rho_B, y_p, T) = \exp\left[-\frac{a_1 A^{a_2} + a_3 |I|^{a_4}}{T_{HHe}(A - 1)}\right]$$



Four parameters: **Bayesian analysis** whose goal is to obtain identical Volumes for the isotopes. Analysis converges.

Astrophysics: supernova modelisation



Phase space covered in Core-Collapse Supervova simulations

Color: electron fraction

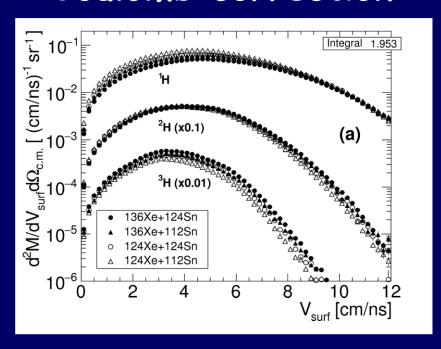
- From Symmetric matter (0.5) red
- To Neutron matter (0) blue

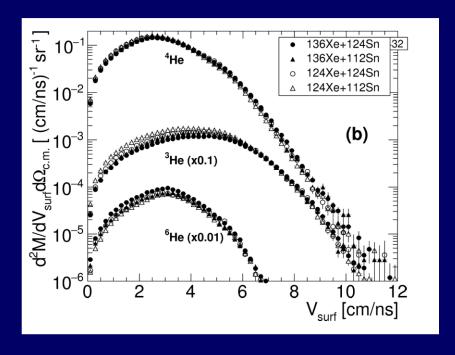
T. Fischer et al. Astro. Phys. Journal 194:39 (2011)

Questions for nuclear physics: what is the chemical composition at these densities and temperatures & measure in medium effects.

Original velocity spectra at cluster creation time

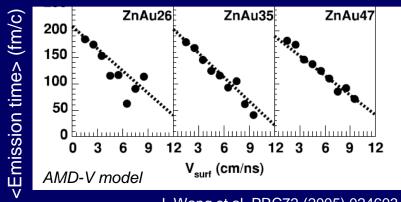
1 - Coulomb correction



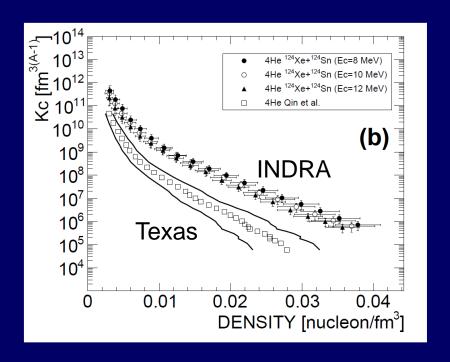


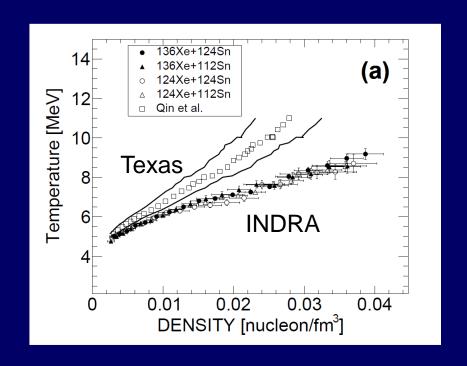
2- Hot expanding source

The velocity is a clock: each velocity bin represents the state of the evolving source at a given time.



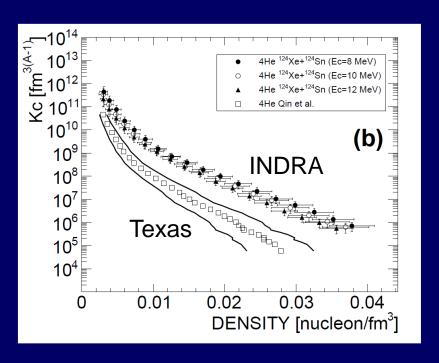
INDRA versus Texas A&M: K_c (4He)

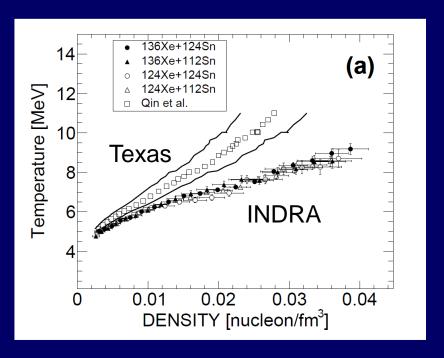




Equilibrium constant values are different but the thermodynamical paths are different

INDRA versus Texas A&M: K, (4He)





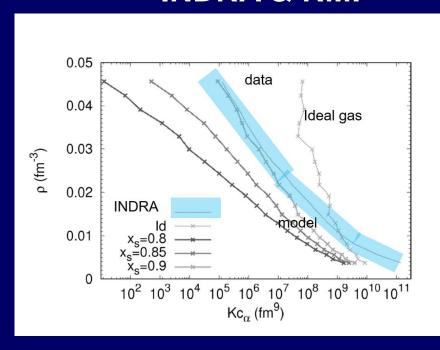
The only way to compare the two sets of data is to use a model.

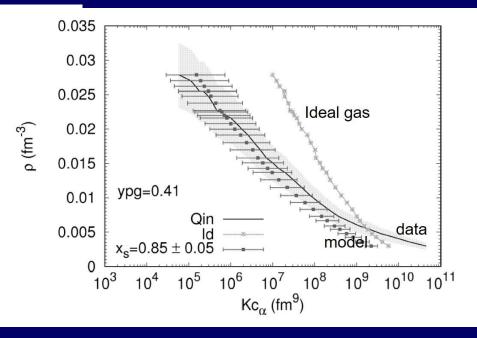
Moreover, the only way to highlight in-medium effects is also to use a model (the data cannot speak for itself).

Relativistic Meam-Field versus DATA

INDRA & RMF

Texas A&M & RMF





- 1) Clear deviations from Ideal gas: in medium effects are present
- 2) Some deviations data/RMF calculations at very low densities
- 3) indra Xs=0.9 while Texas A&M Xs=0.85

What is wrong for our point of view

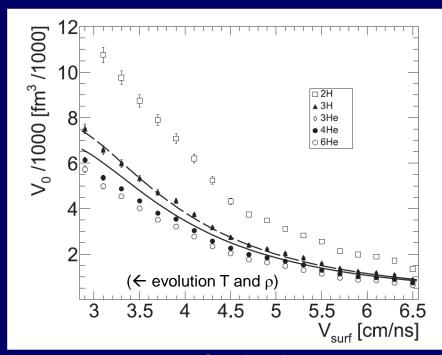
For both experiments, the value of the volume depends on the isotope

Texas A&M

7000 6000 5000 4000 2000 1000 (← evolution T and ρ) v_{IV} (cm/ns)

R. Wada et al. PRC 85 (2012) 064618

INDRA



R. Bougault et al. J. Phys. G 47 (2020) 025103

The value used is the average for A>2.

Attempt to resolve the contradiction

Correction factor for the Ideal Gas Volume formulae:

$$\begin{split} V_f &= h^3 R_{np}^{(A-Z)/(A-1)} C_{AZ} \\ &\times \exp \left[\frac{B_{AZ}}{T(A-1)} \right] \left(\frac{g_{AZ}}{2^A} \frac{\tilde{Y}_{11}^A(\vec{p})}{\tilde{Y}_{AZ}(A\vec{p})} \right)^{1/(A-1)} \end{split}$$

Cluster momentum spectrum divided by (proton momentum spectrum)^A

Previously, $C_{AZ}=1$ (Ideal Gas). Now C_{AZ} will depends on (A,Z):

$$C_{AZ}(\rho_B, y_p, T) = \exp\left[-\frac{a_1 A^{a_2} + a_3 |I|^{a_4}}{T_{HHe}(A-1)}\right]$$

- The correction factor C_{AZ} is a modification of the cluster binding energies due to the presence of the medium and is set so that $V_f(^6He) = V_f(^4He) = V_f(^3He) = V_f(^3H) = V_f(^2H)$ (which is not the case for Texas A&M)
- C_{AZ} has very general four parameters expression depending on Mass and I = (2Z-A)/2.