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Nearly half of the elements beyond the iron are expected to be formed by the
rapid neutron capture process (r-process). However, the astrophysical sites of
the r-process are not well known. The proposed sites include neutrino driven
winds in Type-ll supernovae, neutron star (NS) or NS-Black hole mergers,
collapsars, etc. Detection of lanthanides from the red kilonova spectra of
GW170817 has shown clear evidence of r-process production during NS merger
events. In such scenario, decreasing nuclear stability terminates the r-process
when its heaviest nuclei become unstable to spontaneous fission, but If the
fission barrier height is low enough, neutron capture might induce fission instead

of continuing up the neutron drip line

Number of neutrons

The collision Is described by means of a two-step
process usually applied in spallation, fragmentation, and
charge-exchange reactions: the collision itself, where
part of the nucleons contained in the target nucleus are
removed or modified and some excitation energy and
angular momenta are gained by the remnant;, and
subsequent de-excitation processes by evaporation of
particles or, if applicable, by fission

J.-C. David, Eur. Phys. J. A51, 68 (2015)

Nuclear fission is the process by which a heavy atomic nucleus divides into two lighter fragments and represents the clearest
example of a large-scale collective excitation in nuclel. The fission process is a unigue tool to investigate the nuclear

potential-energy landscape and its evolution as a complex function of excitation energy, elongation, mass asymmetry and
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spin, passing over the fission barrier and culminating at the scission point in the formation of fission fragments

M.R. Mumpower et al., Prog. Part. and Nucl. Phys. 86, 86 (2016)
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Dynamical reaction models for training

In this work the collision between the light particle and the nucleus is described by the Liege
Intranuclear cascade model INCL++. The collision iIs modeled as a sequence of binary
collisions between the nucleons (hadrons) present in the system. Nucleons move along
straight trajectories until they undergo a collision with another nucleon or until they reach the
surface, where they eventually escape. The latest version of INCL also includes isospin- and
energy-dependent nucleus potentials calculated according to optical models as well as isospin-

dependent pion potentials

D. Mancusi et al., Phys. Rev. C 90, 054602 (2014); Phys. Rev. C 91, 034602 (2015)
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Neural network predictions

The neural network (NN) model was trained using data from INCL+ABLA
models, which accurately describe experimentally observed fission and total
cross sections. The input layer of the network received information on nuclear

charge (Z), mass (A), and radii of proton (R,) and neutron (R,) density profiles.
The architecture comprised four layers with a total of 184 trainable parameters

The activation functions employed across the NN
layers were LeakyRelLU, Sigmoid, LeakyRelLU

and LeakyReLU. Adam was used for
backpropagation. The absolute loss function
Indicated that the model reproduced both fission
and total cross sections with an estimated error of
1-2%. Notably, this model can extrapolate results
to exotic nuclel, for which no experimental data or
models currently exist
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| J.J. Cowan et al., Rev. Mod. Phys. 93, ==
015002 (2013)
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N. Vassh et al., J. Phys. G: Nucl. Part. Phys. 46, 065202 (2019)

merger simulations and depending on the model (TF, FRLDM, ETFSI or HFB) the
populated isotopic range changes completely
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ABLA++ describes the deexcitation of a nuclear system emitting
y-rays, neutrons, light-charged particles, and intermediate-mass
fragments (IMFs) or fission in case of hot and heavy remnants

The fission decay width is described by the Bohr-Wheeler
transition-state model and corrected later by dissipative and
transient time effects modeled by the solution of the Fokker-
Planck equation. This approach has provided reasonable results
for nuclei around the stability valley

B. Jurado et al., Phys. Lett. B 553, 186 (2003)
C. Schmitt et al., Phys. Rev. C 81, 064602 (2010)
Y. Ayyad et al., Phys. Rev. C 89, 054610 (2014)
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It also provides a good agreement with fission cross sections for
different stable isotopes as well as the corresponding extrapolation

The neural network is able to predict reaction cross sections for different
stable isotopes and also allows for the extrapolation to the neutron-rich side
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