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Halo nuclei and deuteron
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Exotic nuclei: contain many more(fewer) neutrons than a stable isotope, far away from stability line, so 
short lived and rapidly decayed.

Halo nuclei are exotic nuclei with the following properties:

▪ strong cluster structure They are described as a core plus halo neutrons.

▪ weakly bound with separation energy  1 MeV whereas in stable nuclei is about 6  8 MeV.

▪ extend density Their neutron density distribution shows an extremely long tail. 

▪ large root-mean-square radius and the valence neutrons are mostly located far from the core.

▪ short lived They have decay lifetime in order of mss. 
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Is the deuteron a 
halo nucleus?
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A new two-cluster approach

▪ We present a new simplified expression for the distance between 
two clusters in weakly-bound nuclei.

▪ We present ground-state wave functions, ulj(r), as a combination 
of s & d harmonic oscillator states with a size related to the 
separation energy.

▪ This combination is applied successfully to the reproduce 
dB(E1)/dε data by fitting the sd mixing.
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e2fm2

exp. B(E1) e2fm2

2H p 2.225 0.84 1.98 3.60 3.94(1) 0.72

6He 4He 0.975 1.57 2.48 3.79 3.36(39),3.9(2) 1.53 1.2(2), 1.6(2)

11Be 10Be 0.502 2.39 2.91 6.15 5.77(16),6.1(5) 1.19 1.05(6),1.3(3)

11Li 9Li 0.369 3.12 2.53 4.94 5.01(32) 1.73 1.78(22)

15C 14C 1.218 2.43 2.60 4.36 4.15(50),4.5(2) 0.73 0.77(7)

19C 18C 0.580 2.75 3.0 6.06 5.5(3), 6.6(5) 0.86 0.71(7)
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Reactions of deuteron
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▪ Nuclear reactions for deuteron can occur through:

Theory
H= E 

✓ Elastic scattering: A+B → A+ B    (Optical model)
✓ Inelastic scattering: A+B → A+ B* (Coupled Channel (CC))
✓ Break-up: A+B → A+C+d (CDCC)
✓ Transfer reactions: A+B → C+D (DWBA; CRC)
✓ Fusion reactions: (completely or incompletely) (CC)

Elastic scattering and Optical model (OM)

▪ Optical model (OM) describes the elastic scattering between 
two nuclei by solving a one-body Schrödinger equation.

▪ The system can be considered as two-body interacting via a 
complex mean-field potential called optical potential, deduced 
from the data. 

▪ The optical potential: Coulomb + complex Nuclear, the 
imaginary term describes flux loss due to non-elastic channels. 
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The angular distribution of emitted particles 
reaches the detector is

Experiment

For weakly-bound nuclei, we need a long-range absorption:
 imaginary OP with large aW, adding polarization potentials (DPP), or using CDCC
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▪ When projectiles interact with light targets at energies below the Coulomb barrier the deviation from Rutherford 
scattering may be represented by a short-range nuclear potential.

▪ For heavy ion targets, the weakly-bound projectile may become polarized due to the electric field of the target inducing 
an additional long-range interaction called the Coulomb dynamical polarization potential (CDPP).

▪ The weakly-bound projectile may break up, giving rise to a strong Coulomb dipole excitation to the low-lying continuum.

▪ We presented a CDPP expression by solving Schrodinger eq. [H.M. Maridi, K. Rusek, N. Keeley, Phys. Rev. C 104, 024614 (2021)].

Coulomb Dynamical Polarization Potential (CDPP) 
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𝜀0 is the separation energy, 𝐻0 and 𝐹0 are the Coulomb 

functions in ρ = 𝑘𝑅, 𝜂 =
𝑚𝑐
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This CDPP was used to study breakup & transfer effects of 6,8He+ 
208Pb [H.M. Maridi, K. Rusek, N. Keeley, Eur. Phys. J. A 58, 49 (2022)]The electric dipole polarizability

We presented a method to determine the electric dipole 
polarizability, α0, by equating real CDPP to the classical 
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Coulomb Dissociation at High Energies

▪ The Coulomb dissociation can be taken place when a 
projectile moving with high energy (several hundred of 
MeV/nucleon) passes a heavy ion target

▪ It may be excited by absorbing virtual photons from the 
Coulomb field and the electromagnetic excitation is 
dominated by dipole excitations

▪ The core is assumed here as a spectator so the core state 
in a projectile remains after neutron removal

▪ Coulomb dissociation can be used to determine the 
electromagnetic transitions properties and astrophysical 
S(E) factor for radiative capture reactions b(x,)a 

▪ Recently, we present a new method of calculation as

   𝑘 ≈
2𝑚𝑐

2

𝜇ℏ2 𝑉𝐶 𝑅 + 𝜀0  →
2𝑚𝑐

2

𝜇ℏ2 𝑉𝐶 𝑅 + 𝜀0 + 𝜀   & 𝛿𝑈𝐶(𝑅)→𝛿𝑈𝐶(R, 𝜀)
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▪ However, the CDPP is usually insufficient completely to explain the long-range interactions in exotic systems. For this, 
we add a long-range nuclear dynamical polarization potential (NDPP) to factor in nuclear breakup and transfer.

▪ NDPP is usually taken as a Woods-Saxon type characterized by large radius and/or diffuseness parameters.
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OM Simultaneously calculations at low energies

H.M. Maridi, N. Keeley, K. Rusek, Phys. Rev. C 109, 034601 (2024).

❑ 𝑈𝐶 𝑅 = 𝑉𝐶 𝑅  is the usual real Coulomb potential

❑ 𝛿𝑈𝐶 𝑅 = 𝛿𝑉𝐶 𝑅 +i 𝛿𝑊𝐶 𝑅  is the long-range CDPP

𝑈𝑂𝑃 𝑅 = 𝑈𝐶 𝑅 + 𝑈𝑁 𝑅 + 𝛿𝑈𝐶 𝑅 + 𝛿𝑈𝑁(𝑅)

One- or two- free parameters
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✓ DN → direct nuclear (transfer & nuclear breakup) [𝛿𝑊𝑁 𝑅 ] 
✓ DC → direct Coulomb breakup [𝛿𝑊𝐶 𝑅 ]

▪ The cross sections are given by:
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322 (2002), 𝑎𝐿 = 1/ 8𝜇𝜀0/ℏ2,  𝑅𝐿 = 1.4 (𝐴𝑃
1/3

+ 𝐴𝑇
1/3

)  the strong 
absorption radius, 𝑉𝐿  & 𝑊𝐿  vary to fit the data. 𝑉𝐿 can be ignored.

❑ 𝑈𝑁 𝑅 = 𝑉𝑁 𝑅 + 𝑖𝑊𝑁 𝑅  is the bare short−range nuclear 
potential (Woods−Saxon or double−folding)

❑ 𝛿𝑈𝑁 𝑅 = 𝛿𝑉𝑁 𝑅 +i 𝛿𝑊𝑁 𝑅  is the long−range NDPP
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▪ The total projectile-target optical potential is given as:
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OM Simultaneously calculations of 6He+209Bi 

Data from: 
Aguilera et al., Phys. Rev. Lett. 84, 5058 (2000) 
                      & Phys. Rev. C 63, 061603(R) (2001); 
Kolata et al.,    Phys. Rev. C 75, 031302(R) (2007) 
                      & Phys. Rev. Lett. 81, 4580 (1998)
                     & Eur. Phys. J. A 13, 117 (2002); 
Hassan et al., Bull. Rus. Acad. Sci. Phys. 70, 1785 (2006).

Breakup Cross Sections

Cross Sections

Elastic Scattering

[H.M. Maridi, N. Keeley, K. Rusek, Phys. Rev. C 109, 034601 (2024)].
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𝑈𝑂𝑃 𝑅 = 𝑈𝐶 𝑅 + 𝑈𝑁 𝑅 + 𝛿𝑈𝐶 𝑅 + 𝛿𝑈𝑁(𝑅)

One free parameter can fit:
✓ Elastic scattering Angular distribution 
✓ Breakup cross sections
✓ Fusion cross sections
✓ Alpha-yield cross sections
✓ Total reaction cross sections 
✓ Angular distribution of breakup cross sections.VL  0  
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d-197Au elastic scattering data and OM calculation

the Boltzmann-type exponential function
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Table and data from T Giudice et al., J. Phys. G 50, 045103(2023).

Elastic Scattering
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OM Simultaneously calculations of d-197Au cross section

Cross Sections(d,p) transfer cross sections

Effect of breakup and transfer on 
elastic scattering
 
At 12.5 MeV, both breakup and 
transfer are important
At 52 MeV, effect of breakup is 
dominant

The transfer cross section and 
total reaction cross section are 
reproduced well.
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Summary

This work

▪ The comparison between reactions of halo nuclei and deuteron is presented

▪ Presenting new expression for two-cluster distance in weakly-bound nuclei (like deuteron)

▪ Presenting new expressions for

▪ The CDPP have succeeded to:

In progress
▪ Solving the four-body problem for colliding deuteron with halo nuclei & calculate the 

CDPP arising from both the projectile and target. 
     d+11Li, d+6He, d+11Be scattering @ low energies.

Future of this work

Hasan Maridi, University of Manchester 11

✓ determine the electric dipole polarizability
✓ used in a simultaneously calculation of elastic scattering, fusion, and direct 

cross sections and applied for 6He+209Bi and 2H+197Au reactions

Publications
✓ H.M. Maridi, D.K. Sharp, J. Lubian, In preparation (2024).
✓ H.M. Maridi, J. Singh, N.R. Walet, D.K. Sharp, arXiv:2407.03044 (2024).
✓ H.M. Maridi, N. Keeley, K. Rusek, Phys. Rev. C 109, 034601 (2024).
✓ H.M. Maridi, K. Rusek, N. Keeley, Phys. Rev. C 106, 054613 (2022).
✓ H.M. Maridi, K. Rusek, N. Keeley, Eur. Phys. J. A 58, 49 (2022).
✓ H.M. Maridi, K. Rusek, N. Keeley, Phys. Rev. C 104, 024614 (2021).

✓ the Coulomb dynamical polarization potential (CDPP)
✓ the nuclear dynamical polarization potential (NDPP) 

Is 
deuteron 

a halo 
nucleus?

▪ Improve this study to include all available data of 
deuteron elastic scattering and cross sections to test 
the effect of the breakup and transfer at wide range 
of energy and target mass.
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