First Experimental Test of the Ratio Method

S. Ota, P. Capel, G. Christian, V. Durant, K. Hagel, E. Harris, R. Johnson, Z. Luo, F. Nunes, M. Roosa, A. Saastamoinen & D. Scriven

20 August 2024

Halo Nuclei

Exotic nuclei found far from stability

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius :

neutrons tunnel far from the core and form a halo

One-neutron halo ¹¹Be \equiv ¹⁰Be + n ¹⁵C \equiv ¹⁴C + n Two-neutron halo ⁶He \equiv ⁴He + n + n ¹¹Li \equiv ⁹Li + n + n

Short lifetime $[t_{1/2}(^{11}\text{Be}) = 13 \text{ s}] \Rightarrow$ studied mostly through reactions : elastic scattering, breakup, transfer...

We propose a new reaction observable : the Ratio Method

How it all began...

With Mahir Hussein, study of angular distributions for scattering and breakup of halo nuclei

¹¹Be + Pb @ 69A MeV

Very similar features for scattering and breakup :

- oscillations at fwd angles
- Coulomb rainbow (~ 2°)
- oscillations at large angles (N/F interferences)

 \Rightarrow projectile scattered similarly whether bound or broken up

[PC, Hussein, Baye PLB 694, 448 (2010)]

How it all began...

With Mahir Hussein, study of angular distributions for scattering and breakup of halo nuclei

¹¹Be + Pb @ 69A MeV

Very similar features for scattering and breakup :

- oscillations at fwd angles
- Coulomb rainbow (~ 2°)
- oscillations at large angles (N/F interferences)

 \Rightarrow projectile scattered similarly whether bound or broken up

Then I showed this to Ron Johnson...

[PC, Hussein, Baye PLB 694, 448 (2010)]

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$U_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$U_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt}$ with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q}\cdot\mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ \Rightarrow scattering of compound nucleus \equiv

form factor × scattering of pointlike nucleus

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$U_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt}$ with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ \Rightarrow scattering of compound nucleus \equiv

form factor × scattering of pointlike nucleus

Similarly for breakup :
$$\frac{d\sigma_{bu}}{dEd\Omega} = |F_{E0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{pt}$$

with $|F_{E0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$

 \Rightarrow explains similarities in angular distributions

REB assumes [Johnson, Al-Khalili, Tostevin PRL 79, 2771 (1997)]

• adiabatic approximation

•
$$U_{\mathrm{n}T} = 0$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm pt}$ with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ \Rightarrow scattering of compound nucleus \equiv

form factor × scattering of pointlike nucleus

Similarly for breakup :
$$\frac{d\sigma_{bu}}{dEd\Omega} = |F_{E0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{pt}$$

with $|F_{E0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$

 \Rightarrow explains similarities in angular distributions provides the idea for the Ratio Method. . .

The Ratio Idea

[PC, Johnson, Nunes PLB 705, 112 (2011)]

$$d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2$$

- independent of reaction mechanism not affected by U_{PT} ⇒ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

The Ratio Idea

[PC, Johnson, Nunes PLB 705, 112 (2011)]

$$d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E0}(Q)|^2/|F_{00}(Q)|^2$$

- independent of reaction mechanism not affected by U_{PT} ⇒ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

Alternative : [PC, Johnson, Nunes PRC 88, 044602 (2013)]

$$\mathcal{R}_{\int \text{sum}} = \frac{\int \frac{d\sigma_{\text{bu}}}{dE d\Omega} dE}{\frac{d\sigma_{\text{el}}}{d\Omega} + \frac{d\sigma_{\text{inel}}}{d\Omega} + \int \frac{d\sigma_{\text{bu}}}{dE d\Omega} dE} \stackrel{\text{REB}}{=} 1 - |F_{00}|^2$$

The Ratio Idea

[PC, Johnson, Nunes PLB 705, 112 (2011)]

$$d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2$$

- independent of reaction mechanism not affected by U_{PT} ⇒ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

Alternative : [PC, Johnson, Nunes PRC 88, 044602 (2013)]

$$\mathcal{R}_{\int \text{sum}} = \frac{\int \frac{d\sigma_{\text{bu}}}{dE d\Omega} dE}{\frac{d\sigma_{\text{el}}}{d\Omega} + \frac{d\sigma_{\text{inel}}}{d\Omega} + \int \frac{d\sigma_{\text{bu}}}{dE d\Omega} dE} \stackrel{\text{REB}}{=} 1 - |F_{00}|^2$$

Test this experimentally @ TAMU

¹¹Be+C \rightarrow ^{10,11}Be+C @ 22.5A MeV

Measurement @ TAMU : ¹¹Be + C @ 22.5A MeV

- Use K500 TAMU Cyclotron
- Primary beam of ¹³C @ 30A MeV on Be target
- Produces a secondary beam of ¹¹Be @ 22.5A MeV
- 10⁴ pps with 85% ¹¹Be on secondary target [C_{nat} (17 mg/cm²)]
- Products ^{10,11}Be detected with BlueSTEAI

Blue-STEAI

Blue aluminum chamber of Silicon TElescope Arrays for light nuclei

[Ota et al. NIM A 1059, 168946 (2024)]

- Scattering chamber to study direct reactions in inverse kin.
- 4 Si stripped detectors can be used as $\Delta E E$ telescope arrays
- Different possible configurations to measure
 - forward $\theta \gtrsim 4^{\circ}$
 - up to large angles $\theta \lesssim 30^{\circ}$

¹¹Be + C @ 22.5A MeV

¹¹Be + C @ 22.5A MeV (inclusive) breakup & scattering

• Clean data [Ota, PC et al. arXiv:2407.15535]

- Well reproduced with accurate reaction calculations with optical potentials from double folding of $\chi_{\rm EFT}$ $V_{\rm NN}$ of cutoff
 - $R_0 = 1.2$ fm excellent agreement with data
 - $R_0 = 1.6$ fm too soft \Rightarrow too large cross sections

Data

¹¹Be + C @ 22.5A MeV (inclusive) breakup & scattering

Data

• Clean data [Ota, PC et al. arXiv:2407.15535]

- Well reproduced with accurate reaction calculations with optical potentials from double folding of $\chi_{\rm EFT}$ $V_{\rm NN}$ of cutoff
 - $R_0 = 1.2$ fm excellent agreement with data
 - $R_0 = 1.6$ fm too soft \Rightarrow too large cross sections
- Ratio $\mathcal{R}_{\int sum}$ has smooth angular dependence
 - both cutoffs in agreement with data

¹¹Be + Pb @ 19A MeV

Similar data on Pb from Lanzhou

[Duan et al. PRC 105, 034602 (2022)]

Calculations in excellent agreement with data

[Ota, PC et al. arXiv:2407.15535]

- Little influence of optical potentials (Coulomb dominated)
- Ratio
 - removes the angular dependence
 - reproduced by theory

Summary and outlook

- The ratio method is new reaction observable to study halo nuclei, predicted to be
 - independent of reaction process (and optical potentials)
 - very sensitive to structure observables

[PC, Johnson, Nunes PLB 705, 112 (2011)]

- Confirmed this with first measurement @ TAMU ¹¹Be+C @ 22.5A MeV [Ota, PC *et al.* arXiv:2407.15535] (and re-analysis of Lanzhou data ¹¹Be+Pb @ 19A MeV) but inclusive breakup \Rightarrow limited accuracy
- We need to measure the ratio
 - with exclusive breakup (n in coincidence)
 - at higher beam energy

will enable a direct comparison to form factor $|F_{E0}|^2$

• Plan to do that @ FRIB for ¹⁹C...

Thanks to my collaborators

Shuya Ota

Experimental team

Mahir Hussein[†]

Ron Johnson

Filomena Nunes

Victoria Durant

Cyclotron Institute

Universidade de São Paulo

UNIVERSITY OF SURREY

... and to you for your attention!

Future @ FRIB (MoNA) : breakup and scattering of ¹⁹C

- at larger beam energy viz. 100A MeV
- C and/or Pb targets
- use MoNA to detect n in coincidence

\Rightarrow kill two birds with one stone

- Test the full ratio method
- Study accurately ¹⁹C :
 - $\triangleright S_n$
 - ANC
 - Resonance structure

Configurations 1 & 2

We used two configurations of the Si detectors used in pairs for ΔE -E PID

Config. 1 :

▶ 2 "near" @ 5 cm

$$(\theta_{\rm lab} = 17^{\circ} - 31^{\circ})$$

$$(\theta_{\rm lab} = 5^\circ - 10^\circ)$$

- 2 Config. 2 :
 - 2 detectors at 10 cm

$$(\theta_{\rm lab} = 8^\circ - 18^\circ)$$

PID

- Very clear PID by $\Delta E \cdot E$ in the Si telescopes
- Test with empty target (inset) confirms ¹¹Be and ¹⁰Be come from reaction with target
 - ¹¹Be : scattering (el. & inel.)
 - ¹⁰Be : 1-n removal (incl. bu)
- Clear PID in phoswich plastic scintillator placed 30 cm downstream to measure beam rate

Comparison to REB form factor ¹¹Be + C @ 22.5A MeV ¹¹Be + Pb @ 19A MeV

REB form factor disagrees with data

- On C : U_{nT} not negligible
- On Pb : adiabatic approximation not fully valid

 \Rightarrow need to measure

- n in coincidence
- consider low ¹⁰Be-n energies

DEA calculation of the ratio @ 70A MeV

[PC, Johnson, Nunes PLB 705, 112 (2011), PRC 88, 044602 (2013)] Dynamical calculations confirm the idea :

- Same pattern for scattering and breakup
- Ratio is smooth ⇒ removes sensitivity to reaction mechanism
- In excellent agreement with REB form factor |F_{E0}|²
- Small influence of
 - *U_{nT}* (shift of breakup)
 - Dynamics (on Pb at fwd angles)

DEA calculation of the ratio @ 70A MeV

[PC, Johnson, Nunes PLB 705, 112 (2011), PRC 88, 044602 (2013)]

Dynamical calculations confirm the idea :

- Same pattern for scattering and breakup
- Ratio is smooth ⇒ removes sensitivity to reaction mechanism
- In excellent agreement with REB form factor $|F_{E0}|^2$
- Small influence of
 - *U_{nT}* (shift of breakup)
 - Dynamics (on Pb at fwd angles)
- Independent of the target

Sensitivity to the projectile structure

Because insensitive to U_{PT} and reaction dynamics very sensitive to projectile structure

Angular dependence and magnitude of form factor F_{E0} change with

- neutron binding energy E_0
- orbital angular momentum ℓ
 [PC, Johnson, Nunes
 PLB 705, 112 (2011)
 PRC 88, 044602 (2013)]

Sensitivity to the projectile structure

Because insensitive to U_{PT} and reaction dynamics very sensitive to projectile structure

Angular dependence and magnitude of form factor F_{E0} change with

- neutron binding energy E_0
- orbital angular momentum ℓ
 [PC, Johnson, Nunes
 PLB 705, 112 (2011)
 PRC 88, 044602 (2013)]

Ratio idea extended to

- low beam energy (20A MeV) [Colomer et al. PRC 93, 054621 (2016)]
- proton halos [Yun, Colomer *et al.* JPG 46, 105111 (2019)]

Short review : [PC, Johnson, Nunes EPJA 56, 300 (2020)]

Framework

Projectile (P) modelled as a two-body system : core (c)+loosely bound neutron (n) described by

- $H_0 = T_r + V_{cn}(\mathbf{r})$
- *V*_{cn} adjusted to reproduce *P* spectrum

Target *T* seen as structureless particle

P-T interaction simulated by optical potentials

 \Rightarrow breakup reduces to three-body scattering problem :

$$[T_R + H_0 + U_{cT} + U_{nT}] \Psi(\boldsymbol{r}, \boldsymbol{R}) = E_T \Psi(\boldsymbol{r}, \boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ + \cdots} \phi_0(\mathbf{r})$