First Experimental Test of the Ratio Method

S. Ota, P. Capel, G. Christian, V. Durant, K. Hagel, E. Harris, R. Johnson, Z. Luo, F. Nunes, M. Roosa, A. Saastamoinen & D. Scriven

20 August 2024

Halo Nuclei

Exotic nuclei found far from stability

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius :

neutrons tunnel far from the core and form a halo

Short lifetime $[t_{1/2}$ (¹¹Be) = 13 s] \Rightarrow studied mostly through reactions : elastic scattering, breakup, transfer. . .

We propose a new reaction observable : the Ratio Method

How it all began...

With Mahir Hussein, study of angular distributions for scattering and breakup of halo nuclei

 11 Be + Pb @ 69A MeV

Very similar features for scattering and breakup :

- oscillations at fwd angles
- Coulomb rainbow $(\sim 2^{\circ})$
- oscillations at large angles (N/F interferences)

⇒projectile scattered similarly whether bound or broken up

[\[PC, Hussein, Baye PLB 694, 448 \(2010\)\]](https://doi.org/10.1016/j.physletb.2010.08.072)

How it all began...

With Mahir Hussein, study of angular distributions for scattering and breakup of halo nuclei

 11 Be + Pb @ 69A MeV

Very similar features for scattering and breakup :

- oscillations at fwd angles
- Coulomb rainbow $(\sim 2^{\circ})$
- oscillations at large angles (N/F interferences)

 \Rightarrow projectile scattered similarly whether bound or broken up

Then I showed this to Ron Johnson. . .

[\[PC, Hussein, Baye PLB 694, 448 \(2010\)\]](https://doi.org/10.1016/j.physletb.2010.08.072)

REB assumes [\[Johnson, Al-Khalili, Tostevin PRL 79, 2771 \(1997\)\]](https://doi.org/10.1103/PhysRevLett.79.2771)

• adiabatic approximation

$$
\bullet\ U_{\mathrm{n}T}=0
$$

 \Rightarrow excitation and breakup due to recoil of the core

REB assumes [\[Johnson, Al-Khalili, Tostevin PRL 79, 2771 \(1997\)\]](https://doi.org/10.1103/PhysRevLett.79.2771)

• adiabatic approximation

$$
\bullet\ U_{\mathrm{n}T}=0
$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega}$ = $|F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)$! pt with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ ⇒scattering of compound nucleus ≡

form factor \times scattering of pointlike nucleus

REB assumes [\[Johnson, Al-Khalili, Tostevin PRL 79, 2771 \(1997\)\]](https://doi.org/10.1103/PhysRevLett.79.2771)

• adiabatic approximation

$$
\bullet \, U_{\mathrm{n}T} = 0
$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega}$ = $|F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)$! pt with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ ⇒scattering of compound nucleus ≡

form factor \times scattering of pointlike nucleus

Similarly for breakup :
$$
\frac{d\sigma_{bu}}{dEd\Omega} = |F_{E0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{pt}
$$

with $|F_{E0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i\mathbf{Q} \cdot \mathbf{r}} dr \right|^2$

 \Rightarrow explains similarities in angular distributions

REB assumes [\[Johnson, Al-Khalili, Tostevin PRL 79, 2771 \(1997\)\]](https://doi.org/10.1103/PhysRevLett.79.2771)

• adiabatic approximation

$$
\bullet\ U_{\mathrm{n}T}=0
$$

 \Rightarrow excitation and breakup due to recoil of the core

Elastic scattering : $\frac{d\sigma_{\rm el}}{d\Omega}$ = $|F_{00}|^2 \left(\frac{d\sigma}{d\Omega}\right)$! pt with $F_{00} = \int |\Phi_0|^2 e^{i\mathbf{Q} \cdot \mathbf{r}} d\mathbf{r}$ $\mathbf{Q} \propto (\mathbf{K} - \mathbf{K}')$ ⇒scattering of compound nucleus ≡

form factor \times scattering of pointlike nucleus

Similarly for breakup :
$$
\frac{d\sigma_{bu}}{dEd\Omega} = |F_{E0}|^2 \left(\frac{d\sigma}{d\Omega}\right)_{pt}
$$

with $|F_{E0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i\mathbf{Q} \cdot \mathbf{r}} dr \right|^2$

 \Rightarrow explains similarities in angular distributions provides the idea for the Ratio Method. . .

The Ratio Idea $[PC, Johnson, Nunes PLB 705, 112 (2011)]$

$$
d\sigma_{\text{bu}}/d\sigma_{\text{el}} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2
$$

- independent of reaction mechanism not affected by $U_{PT} \Rightarrow$ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

The Ratio Idea $[PC, Johnson, Numbers\ PLB 705, 112 (2011)]$

$$
d\sigma_{\text{bu}}/d\sigma_{\text{el}} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2
$$

- independent of reaction mechanism not affected by $U_{PT} \Rightarrow$ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

Alternative : [\[PC, Johnson, Nunes PRC 88, 044602 \(2013\)\]](https://doi.org/10.1103/PhysRevC.88.044602)

$$
\mathcal{R}_{\int \text{sum}} = \frac{\int \frac{d\sigma_{\text{bu}}}{dEd\Omega} dE}{\frac{d\sigma_{\text{el}}}{d\Omega} + \frac{d\sigma_{\text{inel}}}{d\Omega} + \int \frac{d\sigma_{\text{bu}}}{dEd\Omega} dE} \stackrel{\text{REB}}{=} 1 - |F_{00}|^2
$$

The Ratio Idea $[PC, Johnson, Nunes PLB 705, 112 (2011)]$

$$
d\sigma_{\text{bu}}/d\sigma_{\text{el}} = |F_{E0}(\boldsymbol{Q})|^2/|F_{00}(\boldsymbol{Q})|^2
$$

- independent of reaction mechanism not affected by $U_{PT} \Rightarrow$ the same for all targets
- probes only projectile structure
- no need to normalise experimental cross sections

Alternative : [\[PC, Johnson, Nunes PRC 88, 044602 \(2013\)\]](https://doi.org/10.1103/PhysRevC.88.044602)

$$
\mathcal{R}_{\int \text{sum}} = \frac{\int \frac{d\sigma_{\text{bu}}}{dEd\Omega} dE}{\frac{d\sigma_{\text{el}}}{d\Omega} + \frac{d\sigma_{\text{inel}}}{d\Omega} + \int \frac{d\sigma_{\text{bu}}}{dEd\Omega} dE} \stackrel{\text{REB}}{=} 1 - |F_{00}|^2
$$

Test this experimentally @ TAMU

 11 Be+C \rightarrow 10,11 Be+C @ 22.5A MeV

Measurement @ TAMU : 11 Be + C @ 22.5*A* MeV à **22.5 MeV/u 11Be** on **C target** (17 mg/cm2) **104 pps**

- Use K500 TAMU Cyclotron
- Primary beam of ¹³C @ 30*A* MeV on Be target
- Produces a secondary beam of ¹¹Be @ 22.5A MeV
- 10^4 pps with 85% ¹¹ Be on secondary target $[C_{nat} (17 mg/cm²)]$
- \bullet Products 10,11 Be detected with BlueSTEAI

Blue-STEAl

Blue aluminum chamber of Silicon TElescope Arrays for light nuclei

Fig. 3. Screw hole mapping in the 30.48 cm × 30.48 cm floor flange of the BlueSTEAl [Ota *et al.* [NIM A 1059, 168946 \(2024\)\]](https://doi.org/10.1016/j.nima.2023.168946) interval, the Si detectors are typically distanced downstream from the target by one of α

- Scattering chamber to study direct reactions in inverse kin.
- 4 Si stripped detectors can be used as ΔE - E telescope arrays
- (see below) and to bias the target ladder (made of aluminum) to collect Different possible configurations to measure are optionally used to host detectors which need high voltage such as
- Fig. 2. Calculation $\sigma \approx 1$ ► forward $\theta \ge 4^\circ$
- ► up to large angles $\theta \lesssim 30^\circ$ ► up to large angles $\theta \lesssim 30^{\circ}$

[Data](#page-13-0) $11_{\text{Be} + \text{C} \text{ @ } 22.5A \text{ MeV}}$

¹¹Be + C @ ²².5*^A* MeV (inclusive) breakup & scattering

• Clean data [Ota, PC et al. [arXiv:2407.15535\]](https://arxiv.org/abs/2407.15535)

- Well reproduced with accurate reaction calculations with optical potentials from double folding of χ_{EFT} V_{NN} of cutoff
	- \cdot R_0 = 1.2 fm excellent agreement with data
	- \cdot *R*₀ = 1.6 fm too soft \Rightarrow too large cross sections

• Well reproduced with accurate reaction calculations with optical potentials from double folding of χ_{EFT} V_{NN} of cutoff

- \cdot $R_0 = 1.2$ fm excellent agreement with data
- \cdot *R*₀ = 1.6 fm too soft \Rightarrow too large cross sections
- Ratio $\mathcal{R}_{\int \mathrm{sum}}$ has smooth angular dependence
	- \rightarrow both cutoffs in agreement with data

¹¹Be + Pb @ 19*A* MeV

Similar data on Pb from Lanzhou [Duan et al. PRC 105, 034602 (2022)]

Calculations in excellent agreement with data

[Ota, PC et al. [arXiv:2407.15535\]](https://arxiv.org/abs/2407.15535)

- Little influence of optical potentials (Coulomb dominated)
- **•** Ratio
	- \cdot removes the angular dependence
	- reproduced by theory

Summary and outlook

- The ratio method is new reaction observable to study halo nuclei, predicted to be
	- \rightarrow independent of reaction process (and optical potentials)
	- \triangleright very sensitive to structure observables

[\[PC, Johnson, Nunes PLB 705, 112 \(2011\)\]](https://doi.org/10.1016/j.physletb.2011.09.105)

- Confirmed this with first measurement @ TAMU ¹¹Be+C @ 22.5A MeV [Ota, PC et al. [arXiv:2407.15535\]](https://arxiv.org/abs/2407.15535) (and re-analysis of Lanzhou data 11 Be+Pb @ 19A MeV) but inclusive breakup \Rightarrow limited accuracy
- We need to measure the ratio
	- \triangleright with exclusive breakup (n in coincidence)
	- $\overline{}$ at higher beam energy

will enable a direct comparison to f<mark>orm factor</mark> $|F_{E0}|^2$

• Plan to do that $@$ FRIB for ${}^{19}C...$

Thanks to my collaborators

Shuya Ota

Experimental team

Mahir Hussein†

Ron Johnson

Filomena Nunes

Victoria Durant

AM Cyclotron Institute

Universidade de São Paulo

UNIVERSITY OF SURREY

IOHANNES GUTENBERG

. . . and to you for your attention !

Future ω FRIB (MoNA) : breakup and scattering of ^{19}C

- at larger beam energy viz. 100*A* MeV
- C and/or Pb targets
- use MoNA to detect n in coincidence

⇒kill two birds with one stone

- **•** Test the full ratio method
- Study accurately ^{19}C :
	- \cdot *S* n
	- \overline{M} ANC
	- \triangleright Resonance structure

Configurations 1 & 2

We used two configurations of the Si detectors used in pairs for ∆*E*-*E* PID

 \bullet Config. 1 :

 \cdot 2 "near" @ 5 cm $(\theta_{\text{lab}} = 17^{\circ} - 31^{\circ})$
18 cm \cdot 2 "far" @ 18 cm

 $(\theta_{\rm lab} = 5^{\circ} - 10^{\circ})$

² Config. 2 :

 \cdot 2 detectors at 10 cm

 $(\theta_{\text{lab}} = 8^{\circ} - 18^{\circ})$

PID

- Very clear PID by ΔE - E in the Si telescopes
- Test with empty target (inset) confirms 11 Be and 10 Be come from reaction with target
	- \blacktriangleright ¹¹Be : scattering (el. & inel.)
	- \blacktriangleright ¹⁰Be : 1-n removal (incl. bu)
- Clear PID in phoswich plastic scintillator placed 30 cm downstream to measure beam rate

Comparison to REB form factor 11 Be + C @ 22.5A MeV 11 Be + Pb @ 19A MeV

REB form factor disagrees with data

- \bullet On C : U_{nT} not negligible
- On Pb : adiabatic approximation not fully valid
- ⇒need to measure
	- n in coincidence
	- consider low 10 Be-n energies

[PC, Johnson, Nunes PLB 705, 112 (2011), PRC 88, 044602 (2013)]

Dynamical calculations confirm the idea :

- Same pattern for scattering and breakup
- Ratio is smooth ⇒ removes sensitivity to reaction mechanism
- In excellent agreement with REB form factor $|F_{E0}|^2$
- Small influence of
	- \cdot *U_{nT}* (shift of breakup)
	- Dynamics (on Pb at fwd angles)

DEA calculation of the ratio @ 70*A* MeV

[PC, Johnson, Nunes PLB 705, 112 (2011), PRC 88, 044602 (2013)]

Dynamical calculations confirm the idea :

- Same pattern for scattering and breakup
- Ratio is smooth \Rightarrow removes sensitivity to reaction mechanism
- In excellent agreement with REB form factor $|F_{E0}|^2$
- **•** Small influence of
	- \cdot *U_{nT}* (shift of breakup)
	- Dynamics (on Pb at fwd angles)
- Independent of the target

Sensitivity to the projectile structure

Because insensitive to *UPT* and reaction dynamics very sensitive to projectile structure

Angular dependence and magnitude of form factor F_{E0} change with

- neutron binding energy E_0
- orbital angular momentum ℓ

[PC, Johnson, Nunes PLB 705, 112 (2011) PRC 88, 044602 (2013)]

Sensitivity to the projectile structure

Because insensitive to *UPT* and reaction dynamics very sensitive to projectile structure

Angular dependence and magnitude of form factor F_{E0} change with

- neutron binding energy E_0
- orbital angular momentum ℓ

[PC, Johnson, Nunes PLB 705, 112 (2011) PRC 88, 044602 (2013)]

Ratio idea extended to

- low beam energy (20A MeV) [Colomer *et al.* PRC 93, 054621 (2016)]
- proton halos [Yun, Colomer et al. JPG 46, 105111 (2019)]

Short review : [PC, Johnson, Nunes EPJA 56, 300 (2020)]

Framework

Projectile (*P*) modelled as a two-body system : core (*c*)+loosely bound neutron (n) described by

- $H_0 = T_r + V_{cn}(r)$
- *V^c*ⁿ adjusted to reproduce *P* spectrum

Target *T* seen as structureless particle

P-*T* interaction simulated by optical potentials

 \Rightarrow breakup reduces to three-body scattering problem :

$$
[T_R + H_0 + U_{cT} + U_{nT}] \Psi(r, R) = E_T \Psi(r, R)
$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \longrightarrow e^{iKZ + \cdots}$ $\phi_0(r)$