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Evolution of the nuclear medium
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• The nuclear fluid is created during pre-
equilibrium dynamics stage, where most of 
the collision’s 𝑇𝜇𝜈 will be in the fluid.

• Hydrodynamical stage (Temp ∼ 102 MeV): 
Strongly coupled quark gluon plasma (QGP) 
- Equation of State (EoS) computed via 

Lattice QCD 

• Molecular dynamics stage (Temp ∼ 10 MeV): 
𝜆𝑚𝑖𝑐𝑟𝑜 ∼ 𝐿ℎ𝑦𝑑𝑟𝑜, simulation switches to 

Boltzmann transport

• Following free-streaming, soft hadrons (𝑝𝑇 ≲
 3 GeV/c) carry most of the medium’s 𝑇𝜇𝜈 to 
detectors.

Viscous fluid 
dynamics

Boltzmann 
Transport

Temp ∼  102 MeV Temp ∼ 10 MeV

𝑡 ∼ 0 fm/c 𝑡 ∼ 1 fm/c 𝑡 ∼ 100 fm/c𝑡 ∼ 10 fm/c 𝑡 ∼ 1015 fm/c



EM sources in the QCD plasma
• Why study electromagnetic probes of the QGP?

• Emitted at all stages of a collision (w/ negligible re-scattering) ⇒ precise information about the QGP

• Virtual photons/dileptons are particularly interesting because of their invariant mass 𝑀
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[ALICE, Phys. Rev. C 102, 055204 (2020)]
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[ALICE, Phys. Rev. C 102, 055204 (2020)]

EM sources in the QCD plasma

[ALICE, Hard Probes 2018,  PoS 174 (2019)]
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[STAR, J. Phys. Conf. Ser. 535, 012006 (2014)]
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• Why study electromagnetic probes of the QGP?
• Emitted at all stages of a collision (w/ negligible re-scattering) ⇒ precise information about the QGP
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• 𝑀 ≳ 1 GeV direct “clean” QGP radiation

• 𝑀 ≲ 1 GeV in-medium hadronic radiation (chiral symmetry breaking/restoration)

• In experiment however…
[STAR, J. Phys. Conf. Ser. 535, 012006 (2014)]
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𝑀 [GeV]

𝑀 [GeV]

[G.V. et al., Phys. Rev. C 101, 044904 (2020)]

• Detailed study of QGP: measure 𝑑𝑁/𝑑𝑀 and 𝑣2 𝑀 , especially M ≳ 1 GeV!

[STAR, Phys. Rev. Lett. 113 (2014) 2, 022301]

𝑀 [GeV]

EM sources in the QCD plasma



Sources of EM probes
• Onset of collisions:

• Prompt photons 

• Drell-Yan dileptons 

• Heavy Quarkonia 

• Open Heavy Flavor, … 

• Pre-hydrodynamical evolution/jet-medium interaction
• EM production coming from various partonic processes

• Hydrodynamical evolution
• EM production coming from partonic and hadronic processes

    

• Transport evolution
• EM production from hadronic interactions
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Figure ref. J. Bernhard, 
H. Elfner (Petersen), 
MADAI Collaboration 

𝜏 ∼ 1 fm/𝑐

𝜏 ∼ 10 fm/𝑐

𝜏 ∼ 100 fm/𝑐

𝜏 ≲ 0. 1 fm/𝑐



EM probes and the QGP

• Bayesian analysis simulating various stages for soft hadronic observables 
are starting to inform us about transport coefficients. 
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Bayesian Analysis by the JETSCAPE Simulations Group

Figure ref. J. Bernhard, 
H. Elfner (Petersen), 
MADAI Collaboration 

𝜏 ∼ 1 fm/𝑐

𝜏 ∼ 10 fm/𝑐

𝜏 ∼ 100 fm/𝑐

𝜏 ≲ 0. 1 fm/𝑐
[D. Everett et al., Phys. Rev. Lett. 126, 242301 (2021)]
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Figure ref. J. Bernhard, 
H. Elfner (Petersen), 
MADAI Collaboration 

𝜏 ∼ 1 fm/𝑐

𝜏 ∼ 10 fm/𝑐

𝜏 ∼ 100 fm/𝑐

𝜏 ≲ 0. 1 fm/𝑐
[D. Everett et al., Phys. Rev. Lett. 126, 242301 (2021)]

• Soft hadron 
observables 
give a better 
description at 
low T.



• Bayesian analysis simulating various stages for soft hadronic observables 
are starting to inform us about transport coefficients. 

• 𝑣𝑛 of EM probes ⇒ directly probe microscopic d.o.f. of nuclear matter 

and can better constrain 
𝜂

𝑠
,

𝜁

𝑠

EM probes and the QGP
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Bayesian Analysis by the JETSCAPE Simulations Group

Figure ref. J. Bernhard, 
H. Elfner (Petersen), 
MADAI Collaboration 

𝜏 ∼ 1 fm/𝑐

𝜏 ∼ 10 fm/𝑐

𝜏 ∼ 100 fm/𝑐

𝜏 ≲ 0. 1 fm/𝑐
[D. Everett et al., Phys. Rev. Lett. 126, 242301 (2021)]

• Soft hadron 
observables: 
not enough?        



EM Rates and Simulations
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Electromagnetic radiation from QCD medium
• Finite Temperature Field Theory

• Dilepton production rate

• Photon production rate
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Electromagnetic radiation from QCD medium 
• Finite Temperature Field Theory

• Dilepton production rate

• Photon production rate

• High Temperature EM spectral function: in pQCD and on the Lattice QCD 

• Low Temperature EM spectral function: hadronic effective Lagrangians 
•  sensitive to chiral symmetry breaking/restoration 
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Dilepton production from pQCD & lattice QCD ✓
• Quite good agreement between pQCD and lattice QCD in the (un-)quenched.
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LO+LPM0 for 
same k/T val. 

• Entering the era for precision calculations of EM spectral functions; with extension to 𝝁𝑩 > 𝟎.

[S.  Ali et al., arxiv:2403.11647] [S.  Ali et al., arxiv:2403.11647]



Dilepton production from hadronic interactions
• EM spectral function via vector mesons

• Many-body effective Lagrangians
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Mesons & Baryons

Mesons only

𝐼𝑚 = 𝐼𝑚

𝐼𝑚 𝐷𝜌 = 𝐼𝑚
[R. Rapp, Acta Phys. Polon. B 42, 2823 (2011)]

𝜇𝐵=330MeV

𝜇𝐵=330MeV



Dilepton production from hadronic interactions ✓
• EM spectral function via vector mesons

• Many-body effective Lagrangians

• Many-body effective Lagrangians now include
the chiral partner of 𝜌, the 𝑎1

• 𝜌 & 𝑎1 agree at high T ⇒ encouraging for
understanding chiral symmetry restoration 
from a hadronic perspective.

23
[P.M. Hohler & R. Rapp, Phys. Lett. B 731, 103 (2014) ]

𝐼𝑚 = 𝐼𝑚

𝐼𝑚 𝐷𝜌 = 𝐼𝑚
[R. Rapp, Acta Phys. Polon. B 42, 2823 (2011)]

𝜇𝐵=330MeV



Dilepton production in a viscous medium ✓
• Theory ⇒ Experimental observables

• Dileptons from (hadronic) scattering theory

• Dileptons from LO pQCD
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[G.V. et al., Phys. Rev. C 101, 044904 (2020)]
[Eletsky et al., Phys. Rev. C 64, 035202 (2001)]

[G.V. et al., Phys. Rev. C  98,  014902 (2018)]
[G.V. et al., Phys. Rev. C 101, 044904 (2020)]
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Dileptons as “timer”, thermometer & viscometer

•  Size of 
𝑑𝑁

𝑑𝑀
∈ 0.3 < 𝑀 < 0.7 GeV                                           [R. Rapp, H. van Hees, Phys. Lett. B 753, 586-590 (2016)]

• Slope of  
𝑑𝑁

𝑑𝑀
∈ 1.5 < 𝑀 < 2.5 GeV
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[STAR, arxiv:2402.01998]
[J. Churchill et al., Phys. Rev. Lett. 132, 172301 (2024)]

303 ± 59 ± 28 MeV

280 ± 64 ± 10 MeV
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[G.V. et al., Phys. Rev. C 98, 014902 (2018)] [G.V. et al., Phys. Rev. C 98, 014902 (2018)]

𝑠𝑁𝑁 = 200 GeV 
Au-Au
20-40%

𝑠𝑁𝑁 = 200 GeV 
Au-Au
20-40%



Dileptons as “timer”, thermometer & viscometer
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[G.V. et al., Phys. Rev. C 98, 014902 (2018)] [G.V. et al., Phys. Rev. C 98, 014902 (2018)]

𝑠𝑁𝑁 = 200 GeV 
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[D. Everett et al., Phys. Rev. Lett. 126, 242301 (2021)]
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•  Size of 
𝑑𝑁

𝑑𝑀
∈ 0.3 < 𝑀 < 0.7 GeV                                           [R. Rapp, H. van Hees, Phys. Lett. B 753, 586-590 (2016)]

• Slope of  
𝑑𝑁

𝑑𝑀
∈ 1.5 < 𝑀 < 2.5 GeV                                              [J. Churchill et al., Phys. Rev. Lett. 132, 172301 (2024)]

• Size of 𝑣2 𝑀  [𝑜𝑟 𝑣𝑛 𝑀 ]

• A joint Bayesian analysis (dileptons & hadrons) to help constrain on 휂/𝑠 𝑇 . 

Dileptons as “timer”, thermometer & viscometer
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[G.V. et al., Phys. Rev. C 98, 014902 (2018)] [G.V. et al., Phys. Rev. C 98, 014902 (2018)]
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•  Size of 
𝑑𝑁

𝑑𝑀
∈ 0.3 < 𝑀 < 0.7 GeV                                           [R. Rapp, H. van Hees, Phys. Lett. B 753, 586-590 (2016)]

• Slope of  
𝑑𝑁

𝑑𝑀
∈ 1.5 < 𝑀 < 2.5 GeV                                              [J. Churchill et al., Phys. Rev. Lett. 132, 172301 (2024)]

• Size of 𝑣2 𝑀  [𝑜𝑟 𝑣𝑛 𝑀 ]

• A joint Bayesian analysis (dileptons & hadrons) to help constrain on 휂/𝑠 𝑇 .

• An accurate measurement of dilepton 𝑣2 is needed at high 𝑠 ⇒ possible following ALICE upgrade

Dileptons as “timer”, thermometer & viscometer ✓
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[CERN Yellow Rep. Monogr. 7, 1159 (2019)]

[G.V. et al., Phys. Rev. C 98, 014902 (2018)] [G.V. et al., Phys. Rev. C 98, 014902 (2018)]

𝑠𝑁𝑁 = 200 GeV 
Au-Au
20-40%

[D. Everett et al., Phys. Rev. Lett. 126, 242301 (2021)]



• Importance of semi-leptonic decays of open heavy flavor to explaining the data

Dilepton yield and 𝑣2 at intermediate M

30

• RHIC data is better described 
if charm exchanges energy & 
momentum w/ QGP 

• Charm’s interaction w/ QGP 
generates dilepton 𝑣2.

[G.V. et al., Phys. Rev. C 89, 034904 (2014)] 
𝑣
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𝑠𝑁𝑁 = 200 GeV 
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𝑠𝑁𝑁 = 200 GeV 
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• Importance of semi-leptonic decays of open heavy flavor to explaining the data

•
𝑑𝑁

𝑑𝑀
 and 𝑣2 in 1 < 𝑀 < 3 GeV must be consistent with heavy flavor (HF) 𝑅𝐴𝐴 and hadronic  HF 𝑣2. 

This is non-trivial as dileptons follow the HF pair traversing the QGP.

• Another handle on heavy flavor transport coefficients (e.g. ො𝑞𝑄𝐶𝐷). [Y. Chen, Tues 9AM]
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• Importance of semi-leptonic decays of open heavy flavor to explaining the data

•
𝑑𝑁

𝑑𝑀
 and 𝑣2 in 1 < 𝑀 < 3 GeV must be consistent with heavy flavor (HF) 𝑅𝐴𝐴 and hadronic  HF 𝑣2. 

This is non-trivial as dileptons follow the HF pair traversing the QGP.

• Another handle on heavy flavor transport coefficients (e.g. ො𝑞𝑄𝐶𝐷). [Y. Chen, Tues 9AM]

• Dilepton 𝑣2 is simultaneously sensitive to ෝ𝒒𝑸𝑪𝑫 and viscosities!

Dilepton yield and 𝑣2 at intermediate M
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Photon production at intermediate 𝑝𝑇

33

Photons 5 < 𝑝𝑇 < 8 GeV:
• Total yield dominated by 

prompt photons
• Significant contribution from

jet-medium ≈ 30 %
• Conversion ≈ 12 % 
• Bremsstrahlung ≈ 18 %

[R. Modarresi-Yazdi et al., Acta Phys. Polon. Supp. 16, A129 (2023)]

• Jet-medium EM production is directly sensitive to ො𝑞𝑄𝐶𝐷, avoiding hadronization effects

• Jet-medium photons are composed of: conversion and bremsstrahlung.



• At lower 𝑠𝑁𝑁, more dileptons from transport

Dileptons from transport

34

[S. Endres al., Phys. Rev. C 94, 024912 (2016)]

coarse-grained
UrQMD

SMASH

[J. Staundenmaier, Phys. Rev. C 98, 054908 (2018)]

⇒ [N. Schild, Mon, 5:05PM]



• At lower 𝑠𝑁𝑁, more dileptons from transport & hydrodynamics at 𝜇𝐵 > 0 with 1st order PT EoS

 

[J. Staundenmaier, Phys. Rev. C 98, 054908 (2018)]

Dileptons from transport & hydrodynamics
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[S. Endres al., Phys. Rev. C 94, 024912 (2016)]

coarse-grained
UrQMD

SMASH

[M. Seck, Phys. Rev. C 106, 014904 (2022)]

Au+Au at 1.23A GeV
Ideal hdyro+1st order EoS

at LO



• At lower 𝑠𝑁𝑁, more dileptons from transport & hydrodynamics at 𝜇𝐵 > 0 with 1st order PT EoS

 

• Consistent description at all beam energies ⇒ combining transport & hydrodynamical calculations.
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• At lower 𝑠𝑁𝑁, more dileptons from transport & hydrodynamics at 𝜇𝐵 > 0 with 1st order PT EoS

 

• Consistent description at all beam energies ⇒ combining transport & hydrodynamical calculations.

• No more jets at lower 𝑠𝑁𝑁: only penetrating probes sensitive to QCD dofs are EM.
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• At lower 𝑠𝑁𝑁, more dileptons from transport & hydrodynamics at 𝜇𝐵 > 0 with 1st order PT EoS

 

• Consistent description at all beam energies ⇒ combining transport & hydrodynamical calculations.

• No more jets at lower 𝑠𝑁𝑁: only penetrating probes sensitive to QCD dofs are EM.

• Bayesian comparisons of dileptons at various 𝑠𝑁𝑁 ⇒ learn more dilepton production mechanisms
• Exclude rates w/o chiral symmetry restoration by comparison with data?

• Determine uncertainties of calculations & accurate measurements 38

Dileptons from transport & hydrodynamics ✓

[S. Endres al., Phys. Rev. C 94, 024912 (2016)]

coarse-grained
UrQMD

[J. Staundenmaier, Phys. Rev. C 98, 054908 (2018)]

SMASH

[M. Seck, Phys. Rev. C 106, 014904 (2022)]

Au+Au at 1.23A GeV
Ideal hdyro+1st order EoS

at LO



Summary & Outlook
✓Improved rates

• NLO pQCD comparable with lattice QCD

• Hadronic rates are now including chiral symmetry restoration effects

✓Better medium simulations 

• Hydrodynamic production of EM probes include off-equilibrium dynamics (i.e., viscous effects) and many 
different sources of EM production are included.

✓What was/can be done
• EM probes possess simultaneous sensitivity to hydrodynamical transport coefficients (e.g., 휁, 휂, 𝜏𝜋, …)

and jet-related transport coefficient ො𝑞𝑄𝐶𝐷 (via jet-medium photons and open heavy flavor dileptons)

• Dynamics of quark generation during the creation of the QGP can be explored via EM probes

➢Future directions
• Determine uncertainties of EM probes calculations (e.g. viscous corrections) for better estimation of 

transport coefficients be it first order (e.g., 휁, 휂, ො𝑞 …). 

• Bayesian analysis using hadron & EM probes with more precise data

• More measurements of dilepton 𝑣2 needed
39



Thank you

Questions?

40



Backup



EM probes sensitivity to other transport coefficients

42

• Sensitivity to chemical equilibration• Sensitivity to second order transport coefficient
 𝜏𝜋 = 𝑏𝜋휂/(휀 + 𝑃) 

PHOTONS FROM ONLY HYDRO

DILEPTONS FROM ONLY HYDRO

𝑠𝑁𝑁 = 200 GeV 

𝑠𝑁𝑁 = 200 GeV 

Au-Au 20-40%

Au-Au 20-40%

[G.V. et al., Phys. Rev. C 94, 014904 (2016)]

[X.-Y. Wu et al., arxiv:2407.04156]

[C. Gale et al., Phys. Rev. C 105, 014909 (2022)]



EM probes sensitivity to transport coefficients

43

PHOTONS

𝑠𝑁𝑁 = 5020 GeV 

Pb-Pb 0-5%

• Sensitivity to electrical conductivity using 
spectral function from EM current in hydro

DILEPTONS

PHOTONS FROM ONLY HYDRO

DILEPTONS FROM ONLY HYDRO

𝑠𝑁𝑁 = 200 GeV 

𝑠𝑁𝑁 = 200 GeV 

Au-Au 20-40%

Au-Au 20-40%

[G.V. et al., Phys. Rev. C 94, 014904 (2016)]

[S. Floerchinger, Phys. Lett. B 837, 137647 (2023)]

𝑠𝑁𝑁 = 5020 GeV 

Pb-Pb 0-5%

• Sensitivity to second order transport coefficient
 𝜏𝜋 = 𝑏𝜋휂/(휀 + 𝑃) 



Dilepton flow at 𝑀 ≳ 1 GeV as probe of QGP
• A heavy flavor tracker can reduce/remove HF signal exposing direct QGP radiation (𝑀 ≳ 1 GeV)

• Need to measure
𝑑𝑁

𝑑𝑀
 and 𝑣2!

44

[G.V. et al., Phys. Rev. C 101, 044904 (2020)]

DILEPTONS FROM 
Cocktail+HYDRO

DILEPTONS FROM 
Cocktail+HYDRO

[also, c.f. B. S. Kasmaei, M. Strickland, Phys. Rev. D 99, 034015 (2019)]



Dilepton calculations compared to data 

45

𝑠𝑁𝑁 = 200 GeV 

• Comparison with data

• Cocktail+Thermal nor 
Cocktail+Charm w/ Lagenvin
are not enough to explain data

• ⇒ all three are sources 
needed, in fact…

     
[G.V. et al., Phys. Rev. C 89, 034904 (2014)] 

𝑠𝑁𝑁 = 200 GeV 

[G.V. et al., Phys. Rev. C 89, 034904 (2014)] 

HM

HM

Au+Au 0-10%
Au+Au 0-10%



Photon sources
• Photons probing early dynamics:

• Primodial photons / Jet-medium photons 

• Photons from jet-medium interaction 

•  Photons emitted during hydrodynamics

• Photons from hadronization 

• Photons from hadronic transport
• Same photon matrix elements as in

hydrodynamical calculations 

46

𝐷, 𝐵, Λ𝑐 … 𝐾, 𝐷, 𝜋 …

𝑘0
𝑑3𝜎𝐴+𝐴→𝛾+𝑋

𝑑3𝑘
= 

𝑎,𝑏,𝑐

𝑓 Τ𝑎 𝐴 𝑥𝑎, 𝑄𝑓𝑎𝑐𝑡
2 ⨂𝑓 Τ𝑏 𝐴 𝑥ത𝑞, 𝑄𝑓𝑎𝑐𝑡

2 ⨂𝑘0
𝑑3 ො𝜎𝑎+𝑏→𝑐+𝛾 𝑄𝑟𝑒𝑛

2

𝑑3𝑘

+ 

𝑎,𝑏,𝑑

𝑓 Τ𝑎 𝐴 𝑥𝑎 , 𝑄𝑓𝑎𝑐𝑡
2 ⨂𝑓 Τ𝑏 𝐴 𝑥 ത𝑞, 𝑄𝑓𝑎𝑐𝑡

2 ⨂𝑘0
𝑑3 ො𝜎𝑎+𝑏→𝑐+𝑑 𝑄𝑟𝑒𝑛

2

𝑑3𝑘
⨂𝐷 Τ𝛾 𝑐(𝑄𝑓𝑟𝑎𝑔

2 )



• Match 𝑇𝜇𝜈(IP-Glasma) ⇒ 𝑇μ𝜈  (KMPST) ⇒ 𝑇μ𝜈 (Hydro)

Photon/Dilepton calculations vs data & Bayesian analysis

47

• Photons are sensitive 
dynamics of quarks production 
CGC → hydrodynamics

• Different sources are 
continuously being included, 
need to include theoretical 
uncertainties

Au-Au
20-40%

Au-Au 
20-40%

RHIC 0-20%

RHIC 0-20%

[C. Gale et al., Phys. Rev. C 105, 014909 (2022)]

[X.-Y. Wu et al., arxiv:2407.04156]
• Bayesian Analysis using EM & 

hadron probes can hopefully 
constrain better the transport 
coefficients of QCD

[X.-Y. Wu et al., arxiv:2407.04156]



Dilepton calculations compared to data 

48

[T. Song et al., Phys. Rev. C 97, 064907 (2018)] • Comparison with data

• RHIC data is better described 
if charm exchanges energy & 
momentum w/ QGP 

     

PHSD

[G.V. et al., Phys. Rev. C 89, 034904 (2014)] 

HM

HM

𝑠𝑁𝑁 = 200 GeV 
Au+Au 0-10%



• Comparison with data

Dilepton calculations compared to data 

49

[G.V. et al., Phys. Rev. C 89, 034904 (2014)] 

HM
HM

HM
HM

HM

HM

NLO pQCD dilepton rates are needed to explain the data.

𝑠𝑁𝑁 = 200 GeV 
Au+Au 0-10%



NLO dilepton calculations

50



NLO effects on 𝑣2

51



EM spectral function from pQCD & lattice QCD

52

LOfor same k/T 
val. NLO+LPMLO 

[I. Ghisoiu & M. Laine; JHEP 10, 083 (2014)]

EM



• Photons from SMASH 
Photon production from hadronic reactions ✓

53

• Photon 𝑣2 𝑝𝑇  from Hydro+SMASH is comparable to 
that obtained from hydro running to lower 
temperature (T=120 MeV)

• Total photon yield from Hydro+SMASH is comparable 
to that obtained from hydro running to lower 
temperature (T=120 MeV).

RHIC 10-20%

LHC 10-20%

RHIC 10-20% LHC 10-20%

[N. Götz, Phys. Rev. C 109, 049901(E) (2024)]

[A. Schäfer, Phys. Rev. C 105, 044910 (2022)]



Uncertainty from viscous corrections

54

[D. Everett et al., Phys. Rev. Lett. 126, 242301 (2021)]



NLO calculations

• Sizeable cancellations in 
photon rates between the 
collinear (coll) contribution 
and soft+semi-collinear (sc) 
contributions  

55

[J. Ghiglieri et al., JHEP 1305, 010 (2013)]

[S. Caron-Hot et al., PRL 100, 052301 (2008)]

• Heavy-quark diffusion coefficient 
acquires large corrections at NLO

[J. Ghiglieri et al., JHEP 1803, 179 (2018)]

• Large corrections to shear viscosity (휂/𝑠) and baryon 
number diffusion (𝐷𝑞) at NLO 



Photon production from pQCD and lattice QCD
• Quenched and non-quenched lattice calculations consistent are consistent pQCD calculations, 

though uncertainties are large. 

56

𝑁𝑓 = 0

[J. Ghiglieri et al., Phys. Rev. D 94, 016005 (2016)] 

𝑁𝑓 = 2𝑑3𝑅

𝑑3𝑘
=

2𝛼𝐸𝑀𝜒𝑞

3𝜋2

𝐷𝑒𝑓𝑓 𝑘

exp 𝑘/𝑇 − 1

𝐷𝑒𝑓𝑓 𝑘 =
𝐼𝑚 Π𝐸𝑀

𝑅

2𝜒𝑞𝑘

[B.B. Brandt et al., EPJ  Web Conf. 175, 07044 (2018)] 



Sensitivity of EM probes to transport coefficients

57

𝑃ℎ𝑜𝑡𝑜𝑛 & 𝜏𝜋 = 𝑏𝜋휂/(휀 + 𝑃)

P
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S 

G
R
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U
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[G.V., J.-F. Paquet et al., Phys. Rev. C 91, 024908 (2015)]

𝜏𝜋 = 𝑏𝜋휂/(휀 + 𝑃)

𝐷𝑖𝑙𝑒𝑝𝑡𝑜𝑛𝑠 & 𝜏𝜋 = 𝑏𝜋휂/(휀 + 𝑃) 𝐻𝑎𝑑𝑟𝑜𝑛𝑠 & 𝜏𝜋 = 𝑏𝜋휂/(휀 + 𝑃)

PHOTONS FROM ONLY HYDRO

𝑠𝑁𝑁 = 200 GeV 𝑠𝑁𝑁 = 200 GeV 

Au-Au
20-40%

𝑏𝜋



Pre-hydrodynamic photon production
• KMPST: Solving the Boltzmann equation in the linear response approximation. 

• Match 𝑇𝜇𝜈(IP-Glasma) ⇒ 𝑇μ𝜈  (KMPST) ⇒ 𝑇μ𝜈  (Hydro)

58

𝜏

4𝜋𝜏𝑅
=

𝜏𝑇𝑖𝑑

4𝜋 Τ휂 𝑠

𝑒 𝑒 𝑖
𝑑

=
𝑒

𝜈 𝑔
𝜋

2
𝑇 𝑖𝑑4

/3
0

[A. Kurkela et al., Phys. Rev. Lett. 122, 122302 (2019)]

• Bridges the gap between the 
asymptotic behavior of 
IP-Glasma → free-streaming and 
hydrodymamics → thermalization

⇒



59

Au-Au 20-40%
𝑠𝑁𝑁 = 200 GeV 

Au-Au 20-40%
𝑠𝑁𝑁 = 200 GeV 

Pb-Pb 20-40%
𝑠𝑁𝑁 = 2.76 TeV 

Pb-Pb 20-40%
𝑠𝑁𝑁 = 2.76 TeV 
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