

R-process in neutron star mergers and supernovae

Almudena Arcones

Rapid neutron capture process

-
-
- solar system and kilonova

Origin of heavy elements?

Rare Supernovae Neutron star mergers

Rapid neutron capture process Explosive and high neutron densities

Galactic Chemical Evolution (GCE)

New generation of stars

First stars: H, He **Intercome and Heavy elements Interstellar medium (ISM)**

The very metal-deficient star HE 0107-5240 (Hamburg-ESO survey)

Observations and galactic chemical evolution

Evolution with time (or metallicity) -> Galactic Chemical Evolution (GCE) -> r-process sites: mergers vs. supernovae

Matteucci et al. MNRAS (2014), Côté et al. ApJ (2019), Molero et al. MNRAS (2021)

Observations and galactic chemical evolution

-> r-process sites: mergers vs. supernovae

Matteucci et al. MNRAS (2014), Côté et al. ApJ (2019), Molero et al. MNRAS (2021)

R-process: from simulations to observations

Equation of state Neutrinos

R-process: from simulations to observations

Equation of state Neutrinos

WinNet

<https://github.com/nuc-astro>Reichert et al. 2023

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

> r-process weak r-process *νp*-process200

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions α-process

Supernova nucleosynthesis

Nuclear statistical equilibrium (NSE)

charged particle reactions α-process

Core-collapse supernova: weak r-process

Neutrino-driven supernovae: elements up to Ag Combine astrophysics and nuclear physics uncertainties Motivation and support for experiments at NSCL, ANL, TRIUMF, ATOMKI

Nuclear physics uncertainty

Path close to stability:

- masses and beta decays known
- beta decays slow
- (*α*,n) reactions move matter to higher Z

time: 9.936e-03 s, T: 4.193e+00 GK, ρ : 2.481e+05 g/cm³

Independently vary each (α, n) reaction rate between Fe and Rh by a random factor

Include theoretical and experimental uncertainties \rightarrow log-normal distributed rates ($\mu = 0$, $\sigma = 2.3$)

36 representative trajectories 10 000 Monte Carlo runs

Sensitivity study: key reactions
Bliss et al., PRC (2020)

Spearman rank order correlation

$$
\frac{\sum_{i=1}^{n} (R(p_i) - \overline{R(p)}) (R(y_i) - \overline{R(y)})}{\left(\frac{n}{n-1} (R(p_i) - \overline{R(p)})^2 \right) \sum_{i=1}^{n} (R(y_i) - \overline{R(y)})^2}
$$

→ Monotonic changes

 \rightarrow -1 $\leq \rho_{\text{corr}} \leq +1$

Sensitivity study: key reactions Bliss et al., PRC (2020)

Key reactions ⇒ large correlation + significant impact on abundance for several astro conditions

Comparison to observations

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Based on optical potentials from Mohr et al., ADNDT (2021)

Comparison to observations

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Based on optical potentials from Mohr et al., ADNDT (2021)

What has been measured so far?

- ${}^{86}\text{Kr}(\alpha, n), {}^{96}\text{Zr}(\alpha, n)$ and ${}^{100}\text{Mo}(\alpha, n)$ at ATOMKI G.G. Kiss et al., Astrophys. J 908, 202 (2021) • T.N. Szegedi et al., Phys. Rev. C 104, 035804 (2021)
- ${}^{75}Ga(\alpha, n)$, ${}^{85,86}Kr(\alpha, xn)$, ${}^{85}Br(\alpha, xn)$ at NSCL/FRIB (HabaNERO/SECAR) F. Montes, J. Pereira et al.
- ${}^{86}\text{Kr}(\alpha, \text{xn})$, ${}^{87}\text{Rb}(\alpha, \text{xn})$, ${}^{88}\text{Sr}(\alpha, \text{xn})$, ${}^{100}\text{Mo}(\alpha, \text{xn})$ at Argonne (MUSIC) M. L. Avila, C. Fougères et al. W. J. Ong et al., Phys. Rev. C 105, 055803 (2022)
- ${}^{86}\text{Kr}(\alpha, n)$ and ${}^{94}\text{Sr}(\alpha, n)$ at TRIUMF (EMMA) C. Aa. Diget, A. M. Laird, M. Williams et al. C. Angus et al., EPJ Web of Conferences, NPA-X (2023)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

- Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment
- Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018
- First simulations of explosions with magnetic fields and detailed neutrino transport (Obergaulinger & Aloy 2017), and their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

Open questions

- Long-time evolution: Magnetar (neutron star) vs. Collapsar (black hole): r-process possible?
- Impact of magnetic field strength and morphology on nucleosynthesis Reichert et al. MNRAS (2024)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

- Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment
- Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018
- First simulations of explosions with magnetic fields and detailed neutrino transport (Obergaulinger & Aloy 2017), and their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

Nucleosynthesis in magneto-rotational supernovae

Obergaulinger et al. 2020

R-process: from simulations to observations

Equation of state Neutrinos Supernovae

Neutron star mergers

Core-collapse supernova yields for galactic chemical evolution (GCE)

R-process: from simulations to observations

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Yasin et al., PRL (2020)

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Effective mass: PNS contraction

Yasin et al., PRL (2020)

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Effective mass: PNS contraction

Yasin et al., PRL (2020)

Equation of state in neutron star mergers

dynamics, gravitational waves, mass ejected (Jacobi et al., MNRAS 2024) nucleosynthesis and kilonova (Ricigliano et al., MNRAS 2024)

R-process: from simulations to observations

Mergers and supernovae as cosmic laboratories establish the origin and history of heavy elements in the universe

