

R-process in neutron star mergers and supernovae

Almudena Arcones

Rapid neutron capture process

Origin of heavy elements?

Rapid neutron capture process Explosive and high neutron densities

Rare Supernovae

Neutron star mergers

Galactic Chemical Evolution (GCE)

The very metal-deficient star HE 0107-5240 (Hamburg-ESO survey)

Observations and galactic chemical evolution

Evolution with time (or metallicity) -> Galactic Chemical Evolution (GCE)

-> r-process sites: mergers vs. supernovae

Matteucci et al. MNRAS (2014), Côté et al. ApJ (2019), Molero et al. MNRAS (2021)

Observations and galactic chemical evolution

Evolution with time (or metallicity) -> Galactic Chemical Evolution (GCE)

Côté et al. ApJ (2019)

-> r-process sites: mergers vs. supernovae

R-process: from simulations to observations

R-process: from simulations to observations

https://github.com/nuc-astro Reichert et al. 2023

Nuclear

physics

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

shock

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

r-process weak r-process νp -process

Supernova nucleosynthesis

Ν

Nuclear statistical equilibrium (NSE)

charged particle reactions a-process

Core-collapse supernova: weak r-process

Neutrino-driven supernovae: elements up to Ag Combine astrophysics and nuclear physics uncertainties Motivation and support for experiments at NSCL, ANL, TRIUMF, ATOMKI

Psaltis et al. ApJ (2022), Psaltis et al. ApJ (2024)

Nuclear physics uncertainty

Path close to stability:

- masses and beta decays known
- beta decays slow
- (α,n) reactions move matter to higher Z

time: 9.936e-03 s, T: 4.193e+00 GK, ρ : 2.481e+05 g/cm 3

Sensitivity study

Independently vary each (α ,n) reaction rate between Fe and Rh by a random factor

Include theoretical and experimental uncertainties

 \rightarrow log-normal distributed rates ($\mu = 0$, $\sigma = 2.3$)

36 representative trajectories 10 000 Monte Carlo runs

Spearman rank order correlation

$$\rho_{\text{corr}} = \frac{\sum_{i=1}^{n} \left(R(p_i) - \overline{R(p)} \right) \left(R(y_i) - \overline{R(y)} \right)}{\sqrt{\sum_{i=1}^{n} \left(R(p_i) - \overline{R(p)} \right)^2} \sqrt{\sum_{i=1}^{n} \left(R(y_i) - \overline{R(y)} \right)^2}}$$

→ Monotonic changes

$$\rightarrow$$
 -1 $\leq \rho_{corr} \leq$ +1

Key reactions \Rightarrow large correlation + significant impact on abundance for several astro conditions

Reaction	Z	MC tracers
59 Fe(α , n) 62 Ni	39 - 42, 45	34, 36
68 Fe(α , n) 71 Ni	36, 37	3
63 Co(α , n) 66 Cu	39–42, 45	20, 34, 36
71 Co(α , n) 74 Cu	36, 37	3
74 Ni $(\alpha, n)^{77}$ Zn	36–42	2, 3, 17, 18, 32
76 Ni $(\alpha, n)^{79}$ Zn	36–42	2, 3, 18, 32
$^{67}\mathrm{Cu}(\alpha,n)$ $^{70}\mathrm{Ga}$	47	35
$^{77}\mathrm{Cu}(\alpha,n)$ ⁸⁰ Ga	37	3
72 Zn(α , n) 75 Ge	39–42	36
76 Zn(α , n) 79 Ge	36, 37–42	2, 3, 17, 18, 32
$^{78}\mathrm{Zn}(\alpha,n)^{81}\mathrm{Ge}$	36, 37–42	2, 3, 17, 18, 32
$^{79}\mathrm{Zn}(\alpha,n)$ $^{82}\mathrm{Ge}$	36, 37–42	2, 3, 18, 32
80 Zn(α , n) 83 Ge	36, 37, 39–42	2, 3, 18, 32
81 Ga(α , n) 84 As	36, 38, 39, 41	17, 32
$^{78}{ m Ge}(\alpha,n)^{81}{ m Se}$	39–42	36
${}^{80}{\rm Ge}(\alpha,n){}^{83}{\rm Se}$	36–39, 42	28, 33, 36
${}^{82}{\rm Ge}(\alpha,n){}^{85}{\rm Se}$	36–39, 41	11, 17, 19, 27, 28, 33
83 As (α, n) 86 Br	36, 37, 41	11, 26, 27, 28, 33
84 Se (α, n) 87 Kr	36–42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 36
85 Se (α, n) 88 Kr	36–42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31
85 Br (α, n) 88 Rb	37–39	6, 7, 8, 9, 10, 22, 23, 24, 26, 28, 29, 30, 31
87 Br $(\alpha, n)^{90}$ Rb	37, 39	6, 9, 10, 29, 31
88 Br $(\alpha, n)^{91}$ Rb	39	26
86 Kr (α, n) 89 Sr	38-42, 44, 45, 47	4, 5, 7, 8, 13, 14, 15, 16, 20, 24, 25, 33, 34, 35

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Based on optical potentials from Mohr et al., ADNDT (2021)

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

Based on optical potentials from Mohr et al., ADNDT (2021)

What has been measured so far?

- 86 Kr(α , n), 96 Zr(α , n) and 100 Mo(α , n) at ATOMKI G.G. Kiss et al., Astrophys. J **908**, 202 (2021) T.N. Szegedi et al., Phys. Rev. C **104**, 035804 (2021)
- 75 Ga(α , n), 85,86 Kr(α , xn), 85 Br(α , xn) at NSCL/FRIB (HabaNERO/SECAR) F. Montes, J. Pereira et al.
- 86 Kr(α , xn), 87 Rb(α , xn), 88 Sr(α , xn), 100 Mo(α , xn) at Argonne (MUSIC) M. L. Avila, C. Fougères et al. W. J. Ong et al., Phys. Rev. C **105**, 055803 (2022)
- 86 Kr(α , n) and 94 Sr(α , n) at TRIUMF (EMMA)
 - C. Aa. Diget, A. M. Laird, M. Williams et al.
 - C. Angus et al., EPJ Web of Conferences, NPA-X (2023)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

- Neutrino-driven supernovae: elements up to Ag
- · Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment

Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

First simulations of explosions with magnetic fields and detailed neutrino transport (Obergaulinger & Aloy 2017), and their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

- Neutrino-driven supernovae: elements up to Ag
- Magneto-rotational supernovae: elements up to U and Th?

Neutron-rich matter ejected by magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment

Winteler et al. 2012, Nishimura et al. 2015, 2017, Mösta et al. 2018

First simulations of explosions with magnetic fields and detailed neutrino transport (Obergaulinger & Aloy 2017), and their nucleosynthesis (Reichert et al. ApJ 2021, Reichert et al. MNRAS 2023)

Open questions

- Long-time evolution:
 Magnetar (neutron star) vs. Collapsar (black hole): r-process possible?
- Impact of magnetic field strength and morphology on nucleosynthesis

Reichert et al. MNRAS (2024)

Nucleosynthesis in magneto-rotational supernovae

Nucleosynthesis based on 2D and 3D simulations with detailed neutrino transport

Impact of magnetic field strength and configuration (Reichert et al. 2024)

Reichert et al. ApJ (2021)

Reichert et al. MNRAS (2023)

Obergaulinger et al. 2020

 $X [10^4 \text{ km}]$

 $t_{pb} = 1.11 \text{ s}$

2D $t_{pb} = 1.10 s$

0.65

^ىر 0.50 ·

0.35

 $Z[10^4 \text{ km}]$

R-process: from simulations to observations

Core-collapse supernova yields for galactic chemical evolution (GCE)

Reduced alpha-network within simulations (Navó et al. 2023)
189 simulations, 1D + accurate neutrino transport + neutrino heating

Jost, Molero et al. submitted, arXiv:2407:14319

R-process: from simulations to observations

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties

1D simulations, FLASH + M1 + increased neutrino heating

Yasin et al., PRL (2020)

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Effective mass: PNS contraction

Yasin et al., PRL (2020)

Equation of state in core-collapse supernovae

First systematic study of nuclear matter properties

1D simulations, FLASH + M1 + increased neutrino heating

Effective mass: PNS contraction

Yasin et al., PRL (2020)

Equation of state in neutron star mergers

Systematic variations of key nuclear matter properties following Bovard et al. PRC, 2017

Impact on:

dynamics, gravitational waves, mass ejected (Jacobi et al., MNRAS 2024) nucleosynthesis and kilonova (Ricigliano et al., MNRAS 2024)

R-process: from simulations to observations

Mergers and supernovae as cosmic laboratories establish the origin and history of heavy elements in the universe

