Quasi-free scattering experiments in inverse kinematics at GSI

Thomas Aumann

TU Darmstadt & GSI & Helmholtz Forschungsakademie Hessen für FAIR NN2024, 23. August 2024

- 1. Quasi-free scattering: Reaction mechanism, Treiman-Yang test to validate assumptions
- 2. The 2-proton halo candidate ¹⁷Ne
- 3. Alpha clusters at the surface of heavy nuclei

Physics Programs based on QFS

Quasi-free knockout reactions $(p,2p), (p,pn), (p,2pn), (p,p\alpha), (p,2p)$ fission

- Single-particle / Shell structure: spectroscopy
- States beyond the drip-lines
- Nucleon-Nucleon short-range correlations
- Cluster structure of nuclei
- Fission studies, dynamics, fission barriers

250

TECHNISCHE UNIVERSITÄT DARMSTADT

250

QFS as a proton-induced knockout reaction

 $X = p, n, {}^{2}H, {}^{3}H, {}^{4}He, etc.$

Impulse approximation:

 $d^4\sigma$

 $dE_p dE_X d\Omega_p d\Omega_X$

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

What we imagine

In PWIA: squared Fourier transform of the overlap integral:

 $d\sigma^{\rm free}$ $S_{\epsilon}(\mathbf{V}_X)$ - n $d\Omega$

Benchmark experiment: ¹²C(p,2p)¹¹B* (R3B at GSI, 400 MeV/nucleon ¹²C)

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

ith ¹¹B and ¹⁰B + n in the final state. uthal (φ) angles in coincidence with on, assuming 15.957 MeV separation Thomas Aumann []] Darmstadt, GSI, HFHF | NN2024 illed red circles) and ${}^{10}B + n$ (empty

Simplest test of the QFS reaction mechanism

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

Treiman-Yang test

QFS cross sections should be independent on TY rotations

S. B. Treiman, C. N. Yang, , PRL 8 (1962) 140

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

140

120

100

80

60

40 20

40

Counts

Treiman-Yang test requires large-acceptance measurement -> inverse kinematics

-40

V. Panin, to be published

TECHNISCHE UNIVERSITÄT DARMSTADT

Transverse momentum and azimuthal spread

 $\Delta \varphi = |\varphi_1 - \varphi_2 - 180^\circ|$ - azimuthal spread of two protons $\Phi_{TY}^* = \pi/2 - |\Phi_{TY} - \pi/2|$ - TY is symmetric around $\pi/2$ —> protons are not distinguishable

V. Panin, to be published

TECHNISCHE

Treiman-Yang angle distribution for different momentum transfers and recoil momenta

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

- Simulation based on ideal QFS process
- Excellent agreement with simulation for a wide range of momentum transfer and recoil momentum
- Deviations visible only for very large momentum transfer and recoil momenta
- Test supports that QFS is a direct one-step process

V. Panin, to be published

TECHNISCHE

The Halo structure of ¹⁷Ne

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

- ¹⁷Ne Borromean 3-body structure
- ¹⁵O core + 2p
- S_{2p} = 933 keV
- Valence protons in sd shell
- Large s² contribution would support halo character
- First exclusive measurement of knockout of halo protons
 - \rightarrow s²/d² configuration ratio

TECHNISCHE UNIVERSITÄT DARMSTADT

11

¹⁷Ne (p,2p)¹⁶F \rightarrow ¹⁵O+p: Experiment at GSI

¹⁷Ne (p,2p): energy and momentum distributions

Independent determinations of s²/d² ratio from energy spectrum and momentum distributions consistent \rightarrow only 35(3)% s² component ! \rightarrow ¹⁷Ne is not a pronounced Halo nucleus

— Spectroscopic factor for valence protons ($s^{2+}d^{2}$): $C^{2}S = 1.8(2) \rightarrow only small or no quenching$

C. Lehr et al., Phys. Lett. B 827 (2022) 136957)

Alpha Clusters at the surface of heavy nuclei

Theoretical prediction:

nuclear clusters appear in low-density nuclear matter +

alpha clusters can form at the very surface of heavy nuclei at densities well below saturation

Dependence of neutron/proton density profiles

- -> dependence on neutron skin
- -> prediction for Sn isotopes

Experiment at RCNP, Osaka University

 $^{112,...,124}$ Sn(p, pMeasurement of

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

 $^{112,...,124}$ Sn $(p, p\alpha)$ X (enriched targets, 392 MeV protons)

Measurement of p and alpha in quasi-free kinematics

-> cross section dependence on A

Drift

chambers

0 1 2 3 m

J. Tanaka et al., Science 372, 260 (2021)

from Ring Cyclotron

TECHNISCHE UNIVERSITÄT DARMSTADT

14

ASn(p,p α) cross sections

Thomas Aumann | TU Darmstadt, GSI, HFHF | NN2024

J. Tanaka et al., Science **372**, 260 (2021)

TECHNISCHE UNIVERSITÄT DARMSTADT

R3B at FAIR

Conclusion

- Quasi-free scattering has proven to be a versatile and clean reaction lacksquareto study short-lived nuclei in inverse kinematics at relativistic energies Large-acceptance experiment allowed for Treiman-Yang test over the full phase space
- ¹⁷Ne(p,2p): halo size suppressed due to dominant I=2 configuration
- Alpha clusters observed at the surface of Sn nuclei
- R3B FAIR Phase-0 experiments in analysis:
 - short range correlations vs. neutron excess: (p,2pN) and (p,pd)
 - (p,2p)fission -> talk by J. Benlliure

-> talk by D. Cortina

