

14th International Conference on Nucleus-Nucleus Collisions (NN2024)

18.–23. Aug. 2024 Whistler Conference Centre

America/Vancouver Zeitzone

The CBM Time-of-Flight project

Ingo Deppner

GSI Helmholtzzentrum für Schwerionenforschung GmbH

19.08.2024

- Introduction to FAIR, CBM and CBM-TOF
- TOF FAIR Phase 0 program
 - eTOF status at STAR/BNL
 - mTOF at mCBM at SIS18/GSI
 - Conditions and counter performance at high rate
 - mCBM performance and $\Lambda\text{-}\mathsf{Reconstruction}$
 - (Gas) Aging of MRPCs and mitigation steps

- Environmental impact of detector gas, possible solutions and implications
- Summary and time line

Introduction to FAIR

Introduction to CBM

Introduction CBM TOF

Multi-gap Resistive Plate Chambers (MRPC) are the most suitable TOF detectors fulfilling our requirements

FLUKA simulation: Au + Au collisions at E_{kin} = 11 AGeV, 10⁷ interactions

CBM-TOF Requirements

- > Full system time resolution $\sigma_T \sim 80$ ps
- Efficiency > 95 %
- ➢ Rate capability ≤ 50 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- > Occupancy < 5 %</p>
- Low power electronics
 - (~100.000 channels)
- Free streaming data acquisition

Example: Structure of MRPC with low resistive glass

CBM-TOF MRPCs

- About 1500 MRPC
- \succ Multi-gap RPC with 8 10 gaps with gap size of 200 250 μm
- > MRPC size ranging from 180 cm² up to 1700 cm²
- **Gas mixture: Tetrafluorethane / SF₆: 97.5% / 2.5%**

Active area

- A module contains several MRPC counters
- Region containing counters equipped with thin float glass, $\rho \approx 10^{12} \Omega$ cm
- Region containing counters equipped with low resistivity glass, $\rho \approx 10^{10} \Omega$ cm

Low resistivity glass (China)

Introduction CBM TOF

 FAIR Phase 0 is a bridge program until the start of FAIR

 It comprises the installation and testing of developed equipment in running experiments and analysis of obtained data

FAIR Phase 0 programs of CBM-TOF

- 1. eTOF project at STAR@BNL (6912 channels) for long term stability test and physics results purpose
- 2. mTOF project at mCBM@SIS18 (1600 channels) for high rate and system integration test purpose

eTOF introduction

η=0

cm

190

126 120

200

s=7.7 GeV

y-y_m

12 -1 -08-0.6-0.4-0.2 0 02 0.4 2 -1 -08 -06 -04 -02 0 02 0.4 2 -1 -08 -08 -04 -02 0 02 0.4 2 -1 -08-06-04-02 0 0.2 0.4

y-y_m

y-y___

y-y_m

2021

13.7

50 M

9

eTOF performance

- Matching efficiency with TPC > 65% for particle momenta above 1 GeV/c
- Calibration almost completed
- PID capability demonstrated
 mission accomplished
- data analysis is work in progress

EToF-Time-Resolution at 3.5 GeV FXT 2020

EToF Performance at 4.5 GeV FXT 2020

mCBM @ SIS18

- mCBM is a full system test setup installed at SIS18/GSI dedicated for high rate detector and readout test including free streaming data acquisition and online event selection
- Interaction rates up to 10 MHz, charged particle fluxes of up to 30 kHz/cm²
- Having a high rate test stand is highly important for detector development

0

-50

mCBM beam time results

low rate thin float glass counter

Performance beyond specs

Efficiency as function of incident ch. particle flux

Time resolution as function of incident ch. particle flux

mCBM Beamtime mCBM March 2021 Gas Mixture: R134a/SEc - 97.5%/2.5%

MRPCs	left	right				
# gaps	2 x 5	2 x 5				
Gap size	230 µm	200 µm				
Glass	Thin fl.	Low rs.				
Glass res.	$10^{12}\Omega cm$	$10^{10}\Omega cm$				
Glass th.	280 µm	700 μm				
Strip pitch	1 cm	0.9 cm				

low resistivity glass counter

Test setup in 2021/2022

FAIR

Aging & gas pollution

- Gas pollution effect observed at mCBM at high rate (about 10 – 20 kHz/cm²)
- Noise is generated on the spacers

- Gas pollution effect was reproduced at IRASM (Bucharest) with high gamma flux
- X-Ray test at Beijing, Bucharest and USTC confirmed the gas pollution effect

- The effect can be minimized by sealing the MRPC and increasing the gas flow
- Mitigation step might not be enough

Observations @ mCBM 2020 rapid increase of dark rate

Dark current relaxation after irradiation

Aging & gas pollution

Observations: continuous increase in dark rate (permanent aging)

- Traces of NaF was found on the glass surface
- Dark rate (noise) is generated entirely on spacers (fishing lines)
- Electrical field simulations performed: in close vicinity to spacer touching point the E-field is 4 times higher

Mitigation of gas pollution and aging

Input of direct gas flow

0.5

60

Time (min)

80

100

120

Dark Dark

10 20 30 40 50 60 70 80

Time (min)

Environmental impact of TOF gas

Parameters for one CBM TOF refill (125 m³ gas)

gas	Isobu- tane	Reclin [®] R134a	Sulfur- hexafluo	Greenhouse Gas Comparison	
			ride	Preventing emission of 1 kg (2.2 lbs) of SF₆ has the equivalent environmental	1 CBM-
chemical structure	i-C ₄ H ₁₀	$C_2H_2F_4$	SF ₆	impact as.	<u>IOF retili</u>
GWP	20	1430	22800	Removing 5 vehicles from the road for an entire year	500
fraction	5%	90%	5%	or	
partial volume [m ³]	6.25	112.5	6.25	Preventing the burning of 11 metric tons of coal	110
density at 1013 mbar [kg/m ³] (15 °C)	2,5	4,4	6,2	or Eliminating the combustion	
portion [kg]	15.625	495	38.75	of 54 barrels of oil	540
CO ₂ equivalent [tons]	0.047	707.9	910.6	LEE Switchgear Committee 2018 John G. Owens, 3M, Greenhouse Gas Emission Reductions from Electric Power Equipment through Use of Sustainable Alternatives to SF6	24
price [Euro]		23800 (47.62 Euro/kg)		due to the high GWPs \Rightarrow - Alternative gases (HFO) - Reduction of SF6	

- Gas recycling

Conclusions for the CBM TOF gas system

- Stay with Tetrafluorethane (R134a) (enhanced F-ion production for HFO in high rate environment)
- Abandon iso-Butan (aging , safety, difficult to recycle)
- Reduce fraction of SF_6 to 2.5% (reduction of GWP, difficult to recycle)
- Increase the flow rate

-12.0 iC4H10

-16.0

-24.0

-28 (

-32

5

Build a recuperation system (reuse of gas, cost reduction, GWP reduction)

0.500 Mole Fraction (R134a) 0.750

0.250

- Long term and high rate test performed (eTOF@STAR & mCBM@SIS18)
 - Time resolution, rate capability demonstrated, float glass counter beyond specs
 - eTOF perfumed very well during BESII and is a key component in the physics analysis
- MRPC aging and gas pollution effects at high rates observed
 - mitigation strategies established
 - new counter with adopted designs developed, built and tested at mCBM in Dec. 23
 - Counter mass production in China started 07/24
- Standard gas mixture has high environmental impact
- Closed loop gas system with recuperation system under development

Time line and major milestones

- \checkmark 2nd counter pre-production finished Q3/2023
- ✓ Module pre-production started: Q4/2023
- ✓ Counter production start (China): 07/2024
- > TOF ready installed: end of 2027 (in line with FAIR schedule)

Thank you for your attention

-CBM

Contributing institutions:

Tsinghua Beijing, NIPNE Bucharest, GSI Darmstadt, TU Darmstadt, HZDR Dresden-Rossendorf USTC Hefei, PI Heidelberg, ITEP* Moscow, CCNU Wuhan.

*Cooperation suspended

| bmb+f

Großgeräte der physikalischen Grundlagenforschung

FAIR — Facility for Antiproton and Ion Research in Europe

💻 🕂 🛯 🖂 🛶 🚺 🛶 🚟 🛶 🚟 🍉

Main frame design

Figure 4

Unit: mm

Time: 1 s

0 Min

- TOF frame entered engineering design phase
- Outer module design almost complete (and tested in mCBM)
- Suspension for modules for low material budget and fast and easy mounting designed
- Stability calculations of the frame performed (ANSIS)
- Mockup frame for testing of module mounting procedure and infrastructure

Mockup frame + 12 modules

Alternative gas search for MRPCs

- Working point is shifted by about 2 kV in respect to traditional gas mixture
- Time resolution worse compared to std. gas mixture

