

Ab initio prediction of *α*(*d*,*γ*) ⁶Li and impact of the ⁶Li properties onto *α*-induced reactions of astrophysical interest

Chloë Hebborn

[PRL 129, 042503 (2022) & PRC 109, L061601 (2024)]

August, 21 2024

Light nuclei, such as Lithium, were already present ∼3 minutes after the Big Bang

 $Q \cap$

The Big-Bang nucleosynthesis accurately predicts abundances at early time...

∢ ロ ▶ . ∢ 伺 ▶ . ∢ ヨ ▶ . ∢

 QQ

The Big-Bang nucleosynthesis accurately predicts abundances at early time... but for Lithium isotopes

4 D F

Different possible solutions to the Lithium problem exist

High-energy physics : inaccurate baryon-to-photon ratio

 \rightarrow BSM physics? unlikely as agreement for He and Be

つへへ

Different possible solutions to the Lithium problem exist

High-energy physics : inaccurate baryon-to-photon ratio

 \rightarrow BSM physics? unlikely as agreement for He and Be

Astrophysics : uncertainties in measuring the BBN abundances

Different possible solutions to the Lithium problem exist

High-energy physics : inaccurate baryon-to-photon ratio

 \rightarrow BSM physics? unlikely as agreement for He and Be

Astrophysics : uncertainties in measuring the BBN abundances

Nuclear physics :

- \rightarrow Large uncertainties
- → *α*(*d*,*γ*) ⁶Li dominates

つひへ

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

at low energy are difficult to measure as the two charged nuclei repulse each other

\n
$$
\alpha(d,\gamma)^6
$$
Li

\ncross section

\nion probability

\n $\frac{\phi[-2\pi\eta]}{E} S(E)$

very low cross section $=$ low reaction probability

$$
\sigma(E) = \frac{\exp[-2\pi\eta]}{E} S(E)
$$

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

つひい

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

つひい

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

 \Rightarrow Need for accurate **microscopic** prediction \rightarrow ab initio methods

For a complete *ab initio* description, we need both structure...

No core shell-model

$$
\Psi = \sum_{\lambda} c_{\lambda} |\overrightarrow{\underbrace{\bigtriangledown}}\rangle
$$

Discrete structure information input

⊕ Bound states,

narrow resonances

 \rightarrow short-range

4 0 F

For a complete ab *initio* description, we need both structure... and dynamical clustered description

No core shell-model with continuum

[Navrátil, Quaglioni, Hupin, Romero-Redondo and Calci, Phys. Scr. 91, 053002 (2016)]

Discrete structure information input

Continuous dynamical input (clustering/reactions)

narrow resonances reactions

- \rightarrow short-range \rightarrow long-range
- ⊕ Bound states, ⊕ Bound & scattering states,

4 D F

Chiral-EFT links the nuclear force to QCD

Systematically improvable expansion !

Includes long-range *π* physics explicitly

 \rightarrow empirically constrained parameters capture short-distance physics

Ab initio predictions are accurate for *α*-*d* scattering

Convergence with $10 + \& 5 -$ parity ⁶Li states, d g.s. $+$ 8 d pseudostates at *Nmax* = 11

HPC at LLNL

Ab initio predictions are accurate for *α*-*d* scattering

Convergence with $10 + \& 5 -$ parity ⁶Li states, d g.s. $+$ 8 d pseudostates at *Nmax* = 11

HPC at LLNL

Ab initio predictions are accurate for ⁶Li spectrum but... not perfect

Accurate prediction of $\alpha(d, \gamma)$ ⁶Li \rightarrow need to have the right ⁶Li g.s.

Use of a phenomenological correction for the overbinding and the position of the 2^+ resonance

€⊡

Chlo¨e Hebborn [Nucleus-Nucleus 2024](#page-0-0) August, 21 2024 11 / 25

Excellent agreement with data : importance of E_{1+} at low energies and E_{2^+} at higher energies

Excellent agreement with data : importance of E_{1+} at low energies and E_{2^+} at higher energies

Which electromagnetic transitions dri[ve](#page-19-0) [th](#page-21-0)[i](#page-18-0)[s](#page-19-0) [r](#page-20-0)[e](#page-21-0)[ac](#page-0-0)[ti](#page-51-0)[on](#page-0-0) [?](#page-51-0)

E2 larger than previous eval. \rightarrow larger ANC

 200

M1 are typically not evaluated in few-body models **M1 important at low E** \rightarrow which role in other capture reactions?

つひい

E1 evaluated with pheno. prescriptions predicted to be dominant Isovector **E1 transitions negligible** due to small $T = 1$ mixing in ⁶Li

E1 evaluated with pheno. prescriptions predicted to be dominant Isovector **E1 transitions negligible** due to small $T = 1$ mixing in ⁶Li

What is the uncertainty due to the choice of *χ*-EFT force & to the finite size of the basis ?

Ab *initio*-informed predictions reduce the uncertainties on the ⁴He(d,γ)⁶Li rate by an average factor 7

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

 200

Ab *initio*-informed predictions reduce the uncertainties on the ⁴He(d,γ)⁶Li rate by an average factor 7

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

\rightarrow Discrepancy in ⁶Li abundances cannot be explained by uncertainties on the react[io](#page-25-0)[n](#page-27-0) [ra](#page-24-0)[t](#page-25-0)[e](#page-27-0)[s](#page-0-0) Ω

Various *α*-induced reactions play a key role in astrophysics

 13 **C** $(\alpha, n)^{16}$ **O** : major *n* source

Various *α*-induced reactions play a key role in astrophysics

 13 **C** $(\alpha, n)^{16}$ **O** : major *n* source

¹²C(*α*,*γ*) ¹⁶O : ¹²C/¹⁶O abundances

Various *α*-induced reactions play a key role in astrophysics

 13 **C** $(\alpha, n)^{16}$ **O** : major *n* source

¹²C(*α*,*γ*) ¹⁶O : ¹²C/¹⁶O abundances

¹³C(α , n)¹⁶O & ¹²C(α , γ)¹⁶O influence abundances of heavier isotopes! Too many nucleons for ab initio predictions of reaction...

How can we predict accurately $(<10\%$ error) α -induced rates?

Below the Coulomb barrier, radiative capture reactions are peripheral, they scale with the $ANC²$

Below the Coulomb barrier, radiative capture reactions are peripheral, they scale with the $AMC²$

The cross section can be obtained in a two-body model

Below the Coulomb barrier, radiative capture reactions are peripheral, they scale with the $AMC²$

The cross section can be obtained in a two-body model

How can we determine accura[tel](#page-31-0)y *[C](#page-29-0)* 2 *A*[−](#page-30-0)*[α](#page-33-0)* [?](#page-0-0)

 2990

Chloë Hebborn **[Nucleus-Nucleus 2024](#page-0-0)**

α-transfer (⁶Li,*d*) around the Coulomb barrier are also peripheral and can be used to extract ANCs

At low energies :

 \leftarrow \Box

α-transfer (⁶Li,*d*) around the Coulomb barrier are also peripheral and can be used to extract ANCs

The cross section can be obtained in a three-body model

α-transfer (⁶Li,*d*) around the Coulomb barrier are also peripheral and can be used to extract ANCs

The cross section can be obtained in a three-body model

S-factors for $^{13}C(\alpha,n)^{16}O$ have been constrained using ANCs extracted from (⁶Li,*d*)...

Normalization of the $^{13}C(\alpha, n)^{16}O$ S-factor

dominated by the $(C_{13}^{1/2+})$ ^{11/2+}₁₃C−α² of ¹⁷O

S-factors for $^{13}C(\alpha,n)^{16}O$ have been constrained using ANCs extracted from (⁶Li,*d*)...

Normalization of the $^{13}C(\alpha, n)^{16}O$ S-factor dominated by the $(C_{13}^{1/2+})$ ^{11/2+}₁₃C−α² of ¹⁷O

Chlo¨e Hebborn [Nucleus-Nucleus 2024](#page-0-0) August, 21 2024 18 / 25

 200

but are inconsistent with recent measurements... and the differences can be traced back to the $C^{1/2^+}_{\alpha=13}$ *α*−13O

JUNA just fits new S-factor data and found larger S-factor and $C_{\alpha=13}^{1/2^+}$ ^{1/2} |
 α ⁻¹³O</sub>

but are inconsistent with recent measurements... and the differences can be traced back to the $C^{1/2^+}_{\alpha=13}$ *α*−13O

JUNA just fits new S-factor data and found larger S-factor and $C_{\alpha=13}^{1/2^+}$ ^{1/2} |
 α ⁻¹³O</sub>

Using the ab initio prediction of $C_{\alpha-d}$ onto of $C_{\alpha-13}^{1/2^+}$ *α*−13C we reconcile both LUNA and JUNA analyses !

Previous $(C_{\alpha-d})^2$: Blokhintsev et al. PRC 48, 2390 (1993)

- evaluated using simple models

 \rightarrow unaccounted syst. uncertainties !

- 22% smaller than ab initio (*Cα*−*d*) 2

つひひ

Using the ab initio prediction of $C_{\alpha-d}$ onto of $C_{\alpha-13}^{1/2^+}$ *α*−13C we reconcile both LUNA and JUNA analyses !

Our (*Cα*−*d*) 2 explains the discrepancy between JUNA and LUNA analyses, & is more precise

 200

Another key astrophysical reaction ¹²C(*α*,*γ*) ¹⁶O have been constrained using (⁶Li,*d*) data and previous ANC !

Cα−12^C extracted from (⁶Li,*d*) data

Another key astrophysical reaction ¹²C(*α*,*γ*) ¹⁶O have been constrained using (⁶Li,*d*) data and previous ANC !

Cα−12^C extracted from (⁶Li,*d*) data used in R-matrix fits (large set of data : ANCs, S-factor, el. scattering, *β*-delayed *α* emission)

つひひ

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the (*Cα*−12C) ² & S-factor at stellar energies !

Data sets cannot constrained $AMCs \rightarrow renormalization$ factors S-factor at low *E* scale with $(C_{\alpha-12})^2$ of 1^- and 2^+ !

 200

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the (*Cα*−12C) ² & S-factor at stellar energies !

Data sets cannot constrained $AMCs \rightarrow renormalization$ factors

S-factor at low *E* scale with $(C_{\alpha-12})^2$ of 1^- and 2^+ !

Tension with (7 Li, t) results \rightarrow unaccounted uncertainties in $C_{\alpha-t}$?

 \leftarrow \Box

Ab initio methods are accurate for light systems

→ Start from a *χ*-EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

4 0 8

Ab initio reduces uncertainties for the ⁴He(d, γ)⁶Li rate by ∼7 !

 200

Ab initio methods are accurate for light systems

 $→$ Start from a *χ*-EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio reduces uncertainties for the ⁴He(d,*γ*) ⁶Li rate by ∼7 !

Impacts ANCs extracted from (⁶Li,*d*) data :

- \rightarrow Reconciliation of LUNA & JUNA S-factors for ${}^{13}C(\alpha, n) {}^{16}O$
- \rightarrow $^{12}{\sf C}(\alpha,\gamma)^{16}{\sf O}$ S-factor at stellar energies reduced by 21% !

つひひ

Ab initio methods are accurate for light systems

 $→$ Start from a *χ*-EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio reduces uncertainties for the ⁴He(d,*γ*) ⁶Li rate by ∼7 !

Impacts ANCs extracted from (⁶Li,*d*) data :

- \rightarrow Reconciliation of LUNA & JUNA S-factors for ${}^{13}C(\alpha, n) {}^{16}O$
- \rightarrow $^{12}{\sf C}(\alpha,\gamma)^{16}{\sf O}$ S-factor at stellar energies reduced by 21% !

Prospects : ¹²C(α , γ)¹⁶O R-matrix & use it into nucleosynthesis network

つひひ

Ab initio methods are accurate for light systems

 $→$ Start from a *χ*-EFT NN+3N Hamiltonian

& no pheno. approximation of the E1 and M1 !

Ab initio reduces uncertainties for the ⁴He(d,*γ*) ⁶Li rate by ∼7 !

Impacts ANCs extracted from (⁶Li,*d*) data :

- \rightarrow Reconciliation of LUNA & JUNA S-factors for ${}^{13}C(\alpha, n) {}^{16}O$
- \rightarrow $^{12}{\sf C}(\alpha,\gamma)^{16}{\sf O}$ S-factor at stellar energies reduced by 21% !

Prospects : ¹²C(α , γ)¹⁶O R-matrix & use it into nucleosynthesis network

Improvements of few-body models,

e.g. importance of 3-body force

[Hlophe, Kravvaris, Quaglioni, PRC 107 014315 (2023)]

Thanks to my collaborators...

Lawrence Livermore

National Laboratory

Sofia Quaglioni

Kostas Kravvaris

Gregory Potel

&TRIUMF

 Lab

Petr Navratil

Melina Avila

Þ \triangleright \rightarrow \equiv Ω

Irène Joliot-Curie

Chloë Hebborn **Christian Christian August, 21 2024** 24 / 25

Guillaume Hupin

◂**◻▸ ◂风 ▸**

to the [few-body reaction group at MSU,](#page-0-1) ...

Filomena Nunes

Chloë Hebborn

Kyle Beyer

Patrick McGlynn

Cate Beckman

Manuel Catacora Rios Andy Smith

Daniel Shiu

Pablo Giuliani

4 0 8

Grigor Sargsyan

& you for your attention !

 QQQ