

Ab initio prediction of $\alpha(d,\gamma)^6 \text{Li}$ and impact of the $^6 \text{Li}$ properties onto α -induced reactions of astrophysical interest

Chloë Hebborn

[PRL 129, 042503 (2022) & PRC 109, L061601 (2024)]

August, 21 2024

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 1/25

Light nuclei, such as Lithium, were already present ~3 minutes after the Big Bang

The Big-Bang nucleosynthesis accurately predicts abundances at early time...

The Big-Bang nucleosynthesis accurately predicts abundances at early time... but for Lithium isotopes

[Fig. adapted from JPCS 665 012004 (2016)]

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 3 / 25

Different possible solutions to the Lithium problem exist

High-energy physics: inaccurate baryon-to-photon ratio

→ BSM physics? unlikely as agreement for He and Be

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 4 / 25

Different possible solutions to the Lithium problem exist

High-energy physics: inaccurate baryon-to-photon ratio

→ BSM physics? unlikely as agreement for He and Be

Astrophysics: uncertainties in measuring the BBN abundances

Different possible solutions to the Lithium problem exist

High-energy physics: inaccurate baryon-to-photon ratio

→ BSM physics? unlikely as agreement for He and Be

Astrophysics: uncertainties in measuring the BBN abundances

Nuclear physics:

- → Large uncertainties
- $\rightarrow \alpha(d,\gamma)^6$ Li dominates

←□ → ←□ → ←□ → ←□ → □ → ○

Nucleus-Nucleus 2024

August, 21 2024

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

$$\alpha(d,\gamma)^6$$
Li

very low cross section = low reaction probability

$$\sigma(E) = \frac{\exp[-2\pi\eta]}{E} \; \mathrm{S(E)}$$

Reactions at low energy are difficult to measure as the two charged nuclei repulse each other

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

Two-body models:

- ⊕ agree with direct data
- ⊖ use pheno. interaction

d He

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

Two-body models:

- ⊕ agree with direct data
- ⊖ use pheno. interaction
- ⊖ M1 not evaluated

Theories based on two-body models do not evaluate consistently all electromagnetic transitions

Two-body models:

- ⊕ agree with direct data
- ⊖ use pheno. interaction
- ⊖ M1 not evaluated

E1 dipole suppressed as $\mathbf{R}_{cm} = \mathbf{R}_{cm}^{ch}$

- ⊖ Use of pheno. prescription with exp. mass
- ⇒ Need for accurate **microscopic** prediction → *ab initio* methods

For a complete *ab initio* description, we need both structure...

No core shell-model

- Bound states,narrow resonances
 - → short-range

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 7

For a complete *ab initio* description, we need both structure... and dynamical clustered description

No core shell-model with continuum

[Navrátil, Quaglioni, Hupin, Romero-Redondo and Calci, Phys. Scr. 91, 053002 (2016)]

$$\Psi = \sum_{\lambda} c_{\lambda} | \stackrel{ ext{Discrete structure}}{ ext{Discrete structure information input}}
angle + \sum_{
u} \int dr u_{
u}(r) | \stackrel{ ext{Continuous dynamical input (clustering/reactions)}}{ ext{Continuous dynamical input (clustering/reactions)}}$$

- Bound states,narrow resonances
 - → short-range

- Bound & scattering states,reactions
 - → long-range

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 7 / 25

Chiral-EFT links the nuclear force to QCD

Systematically improvable expansion!

Includes long-range π physics explicitly

→ empirically constrained parameters capture short-distance physics

8 / 25

Ab initio predictions are accurate for α -d scattering

Convergence with 10 + & 5 - parity $^6\mathrm{Li}$ states, d g.s. + 8 d pseudostates at N_{max} = 11

HPC at LLNL

Ab initio predictions are accurate for α -d scattering

Convergence with 10+&~5- parity $^6\mathrm{Li}$ states, d g.s. +~8~d pseudostates at $N_{max}=11$

HPC at LLNL

Importance of 3N (SRG-induced & chiral)

Ab initio predictions are accurate for ⁶Li spectrum but... not perfect

Accurate prediction of $\alpha(d,\gamma)^6 \text{Li} \rightarrow \text{need to have the right }^6 \text{Li g.s.}$

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024

Use of a phenomenological correction for the overbinding and the position of the 2⁺ resonance

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 11 / 25

Ab initio prediction fills the experimental gap for $\alpha(d,\gamma)^6 \mathrm{Li}$

Excellent agreement with data : importance of E_{1^+} at low energies and E_{2^+} at higher energies

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 12 / 25

Ab initio prediction fills the experimental gap for $\alpha(d,\gamma)^6 \mathrm{Li}$

Excellent agreement with data : importance of E_{1^+} at low energies and E_{2^+} at higher energies

Which electromagnetic transitions drive this reaction?

E2 larger than previous eval. → larger **ANC**

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 13 / 25

M1 are typically not evaluated in few-body models M1 important at low $E \rightarrow$ which role in other capture reactions?

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 13 / 25

E1 evaluated with pheno. prescriptions predicted to be dominant lsovector **E1 transitions negligible** due to small T = 1 mixing in 6 Li

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 13 / 25

E1 evaluated with pheno. prescriptions predicted to be dominant Isovector E1 transitions negligible due to small T=1 mixing in 6 Li

What is the uncertainty due to the choice of χ -EFT force & to the finite size of the basis?

Ab initio-informed predictions reduce the uncertainties on the ${}^4\text{He}(d,\gamma){}^6\text{Li}$ rate by an average factor 7

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 14 / 25

Ab initio-informed predictions reduce the uncertainties on the ${}^4\text{He}(d,\gamma){}^6\text{Li}$ rate by an average factor 7

[Hebborn, Hupin, Kravvaris, Quaglioni, Navrátil, Gysbers, Phys. Rev. Lett. 129, 042503 (2022)]

→ Discrepancy in ⁶Li abundances cannot be explained by uncertainties on the reaction rates

Various α -induced reactions play a key role in astrophysics

 $^{13}\mathbf{C}(\alpha,n)^{16}\mathbf{O}$: major n source

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 15 / 25

Various α -induced reactions play a key role in astrophysics

 $^{13}\mathbf{C}(\alpha,n)^{16}\mathbf{O}$: major n source

Helium burning

 $^{12}\mathbf{C}(\alpha,\gamma)^{16}\mathbf{O}$: $^{12}\mathbf{C}/^{16}\mathbf{O}$ abundances

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 15 / 25

Various α -induced reactions play a key role in astrophysics

 $^{13}\mathbf{C}(\alpha,n)^{16}\mathbf{O}$: major n source

 $^{12}\textbf{C}(\alpha,\gamma)^{16}\textbf{O}:^{12}\text{C}/^{16}\text{O}$ abundances

 13 C(α , n) 16 O & 12 C(α , γ) 16 O influence abundances of heavier isotopes! Too many nucleons for ab initio predictions of reaction...

How can we predict accurately (<10% error) α -induced rates?

15 / 25

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024

Below the Coulomb barrier, radiative capture reactions are peripheral, they scale with the ANC²

Below the Coulomb barrier, radiative capture reactions are peripheral, they scale with the ANC²

The cross section can be obtained in a two-body model

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 16 / 25

Below the Coulomb barrier, radiative capture reactions are peripheral, they scale with the ANC²

The cross section can be obtained in a two-body model

How can we determine accurately $C_{A^{\square}\alpha}^2$?

 Chloë Hebborn
 Nucleus-Nucleus 2024
 August, 21 2024
 16 / 25

α -transfer (${}^{6}\text{Li}, d$) around the Coulomb barrier are also peripheral and can be used to extract ANCs

At low energies:

α -transfer (${}^{6}\text{Li}, d$) around the Coulomb barrier are also peripheral and can be used to extract ANCs

At low energies:

The cross section can be obtained in a three-body model

α -transfer (6 Li, d) around the Coulomb barrier are also peripheral and can be used to extract ANCs

At low energies :

The cross section can be obtained in a three-body model

$$\sigma_{^{6}\text{Li},d} \approx C_{\alpha-d}^{2} C_{A-\alpha}^{2} \frac{\hat{\sigma}_{^{6}\text{Li},d}^{DWBA}}{\hat{C}_{A-\alpha}^{2} \hat{C}_{\alpha-d}^{2}}$$

If one knows $C_{\alpha-d}^2$, one can determine $C_{A-\alpha}^2$ from (⁶Li, *d*) data!

ANC method : [Tribble et al. Rep. Prog. Phys. 77, 106901 (2014)]

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 17 / 25

S-factors for ${}^{13}C(\alpha, n){}^{16}O$ have been constrained using ANCs extracted from $({}^{6}Li, d)...$

Normalization of the $^{13}{\rm C}(\alpha,n)^{16}{\rm O}$ S-factor dominated by the $(C^{1/2+}_{^{13}{\rm C}-\alpha})^2$ of $^{17}{\rm O}$

S-factors for ${}^{13}\text{C}(\alpha, n){}^{16}\text{O}$ have been constrained using ANCs extracted from $({}^{6}\text{Li}, d)...$

Normalization of the $^{13}{\rm C}(\alpha,n)^{16}{\rm O}$ S-factor dominated by the $(C^{1/2+}_{^{13}{\rm C}-\alpha})^2$ of $^{17}{\rm O}$

[Ciani et al. PRL 127, 152701 (2021)]

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

but are inconsistent with recent measurements... and the differences can be traced back to the $C_{lpha-13}^{1/2^+}$

JUNA just fits new S-factor data and found larger S-factor and $C_{\alpha^{-13}\mathrm{O}}^{1/2^+}$!

[Gao et al. PRL 129, 132701 (2022)]

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 19 / 25

but are inconsistent with recent measurements... and the differences can be traced back to the $C_{\alpha^{-13}{ m O}}^{1/2^+}$

JUNA just fits new S-factor data and found larger S-factor and $C_{\alpha^{-13}\mathrm{O}}^{1/2^+}$!

What can explain this discrepancy?

[600 01 0... 112 125, 152701 (2022)]

$$\sigma_{^{6}\text{Li},d} \approx C_{\alpha-d}^{2} C_{A-\alpha}^{2} \frac{\hat{\sigma}_{^{6}\text{Li},d}^{DWBA}}{\hat{C}_{A-\alpha}^{2} \hat{C}_{\alpha-d}^{2}}$$

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 19 / 25

Using the ab initio prediction of $C_{\alpha-d}$ onto of $C_{\alpha-13}^{1/2^+}$, we reconcile both LUNA and JUNA analyses!

Previous $(C_{\alpha-d})^2$: Blokhintsev *et al.* PRC **48**, 2390 (1993)

- evaluated using simple models
 - → unaccounted syst. uncertainties!
- 22% smaller than ab initio $(C_{\alpha-d})^2$

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 20 / 25

Using the ab initio prediction of $C_{\alpha-d}$ onto of $C_{\alpha-13}^{1/2^+}$, we reconcile both LUNA and JUNA analyses!

Our $(C_{\alpha-d})^2$ explains the discrepancy between JUNA and LUNA analyses, & is more precise

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 20 / 25

Another key astrophysical reaction $^{12}C(\alpha, \gamma)^{16}O$ have been constrained using $(^{6}Li, d)$ data and previous ANC!

 $C_{\alpha^{-12}\text{C}}$ extracted from (⁶Li, *d*) data

[Avila et al. PRL **114**, 071101 (2015)] [Brune et al. PRL **83**, 4025 (1999)]

Another key astrophysical reaction $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ have been constrained using $(^6\text{Li},d)$ data and previous ANC!

 $C_{\alpha^{-12}\mathrm{C}}$ extracted from (⁶Li, *d*) data used in R-matrix fits (large set of data : ANCs, S-factor, el. scattering, β -delayed α emission)

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the $(C_{\alpha-1^2C})^2$ & S-factor at stellar energies!

[Brune et al. PRL **83**, 4025 (1999)] [Avila et al. PRL **114**, 071101 (2015)]

Data sets cannot constrained ANCs \rightarrow renormalization factors S-factor at low E scale with $(C_{\alpha^{-12}C})^2$ of 1^- and 2^+ !

Chloë Hebborn Nucleus-Nucleus 2024 August, 21 2024 22 / 25

The ab initio $(C_{\alpha-d})^2$ leads to a reduction of 21% of the $(C_{\alpha-1})^2$ & S-factor at stellar energies!

[Brune et al. PRL **83**, 4025 (1999)] [Avila et al. PRL **114**, 071101 (2015)] [Oulebsir et al. PRC **85**, 035804 (2012)]

Data sets cannot constrained ANCs \to renormalization factors S-factor at low E scale with $(C_{\alpha^{-12}\mathrm{C}})^2$ of 1^- and 2^+ !

Tension with (⁷Li, t) results \rightarrow unaccounted uncertainties in $C_{\alpha-t}$?

Ab initio methods are accurate for light systems \rightarrow Start from a χ -EFT NN+3N Hamiltonian

 \rightarrow Start from a χ -EFT NN+3N Hamiltonian & no pheno. approximation of the E1 and M1!

Ab initio reduces uncertainties for the ${}^4\text{He}(d,\gamma){}^6\text{Li}$ rate by ${\sim}7$!

 \rightarrow Start from a χ -EFT NN+3N Hamiltonian & no pheno. approximation of the E1 and M1!

Ab initio reduces uncertainties for the ${}^4\text{He}(d,\gamma){}^6\text{Li}$ rate by ${\sim}7$!

Impacts ANCs extracted from $(^6\text{Li}, d)$ data :

- \rightarrow Reconciliation of LUNA & JUNA S-factors for $^{13}\text{C}(\alpha, n)^{16}\text{O}$
- \rightarrow $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ S-factor at stellar energies reduced by 21%!

Ab initio methods are accurate for light systems

 \rightarrow Start from a χ -EFT NN+3N Hamiltonian & no pheno. approximation of the E1 and M1!

Ab initio reduces uncertainties for the 4 He(d, γ) 6 Li rate by \sim 7!

Impacts ANCs extracted from $(^{6}Li, d)$ data :

- \rightarrow Reconciliation of LUNA & JUNA S-factors for $^{13}C(\alpha, n)^{16}O$
- \rightarrow ¹²C(α , γ)¹⁶O S-factor at stellar energies reduced by 21%!

Prospects: ${}^{12}C(\alpha,\gamma){}^{16}O$ R-matrix & use it into nucleosynthesis network

Ab initio methods are accurate for light systems

 \rightarrow Start from a χ -EFT NN+3N Hamiltonian & no pheno. approximation of the E1 and M1!

Ab initio reduces uncertainties for the ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$ rate by ${\sim}7$!

Impacts ANCs extracted from $(^6\text{Li}, d)$ data :

- \rightarrow Reconciliation of LUNA & JUNA S-factors for 13 C $(\alpha,n)^{16}$ O
- \rightarrow $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ S-factor at stellar energies reduced by 21% !

Prospects: $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ R-matrix & use it into nucleosynthesis network

Improvements of few-body models,

e.g. importance of 3-body force

[Hlophe, Kravvaris, Quaglioni, PRC 107 014315 (2023)]

Thanks to my collaborators...

Sofia Quaglioni

Gregory Potel

Peter Gysbers

Guillaume Hupin

to the few-body reaction group at MSU, ...

Filomena Nunes

Chloë Hebborn

Kyle Beyer

Patrick McGlynn

Cate Beckman

Manuel Catacora Rios

Daniel Shiu

& you for your attention!