Exploration of ultra-high dose rate radiobiology with laser-driven protons at BELLA

K. Nakamura, BELLA Center ATAP Division, Lawrence Berkeley National Laboratory

NN2024: 14th International Conference on Nucleus-Nucleus Collisions August 21, 2024, Whistler, BC Canada

ACCELERATOR TECHNOLOGY & ATAP

LaserNetUS

Office of

Science

Acknowledgement: Muti-Team Collaboration

BELLA Center		Collaborators	
BELLA Scientists Lieselotte Obst-Huebl Jared De Chant Aodhan McIlvenny Sahel Hakimi Jian-Hui Bin Alex Picksley Hai-En. Tsai Stepan Bulanov Anthony Gonsalves Jeroen van Tilborg Carl Schroeder	Center Technical support Art Magana Joe Riley Mackinley Kath Robert Ettelbrick Zac Eisentraut Mark Kirkpatrick Tyler Sipra Haris Muratagic Chetanya Jain Nathan Ybarrolaza Paul Centeno	Collabo LBL BSE division J. Inman J.H. Mao A. Snijders B. Simmons MBIB division S. Kidd S. Subramanian S. Gupta C.Y. Ralston ATAP-AMP	Univ. Michigan B. Stassel L. Willingale Univ. Lausanne MC. Vozenin Univ. Belfast C. Palmer
Carl Schroeder Eric Esarey Cameron Geddes	Paul Centeno Thorsten Stezelberger Derrick McGrew	A. Huebl JL. Vay	L. Geulig

0

BSE

Work supported by the U.S. DOE Office of Science, Offices of FES and HEP, and LaserNetUS under Contract No. DE-AC02-05CH11231 and Laboratory Directed Research and Development Grant, PI A. M. Snijders

Office of

Science

U.S. DEPARTMENT OF

Laser<mark>Net</mark>US

BELLA Center: one of the three major accelerator facilities at LBNL

BELLA (Berkeley Lab Laser Accelerator) Center houses multiple laser systems enabling a wide range of LPAs and their applications^[1]

BELLA-PW (iP1) 40 Joule in 40fs (1 PW) GeV acceleration, Staging Proton & ion acceleration

BELLA-HTT 3 Joule in 30fs (100 TW) Mono-chromatic gamma rays

BELLA FIBER 100s mJ in <100fs (>1kHz)

- Laser R&D
 - Light sources at >1kHz

BELLA-iP2 at BELLA-PWBELLA-KHz40 Joule in 40fs (1 PW)A few mJ in 5fs (TW)Proton & ion accelerationMeV Acceleration

BELLA-HTU 3 Joule in 30fs (100 TW) X-ray laser

[1] K. Nakamura et al., Journal of the Particle Accelerator Society of Japan 19, 205 (2023)

Laser-driven (LD) ion acceleration^[2]: compact, pulsed, high-charge ion beam source

Characteristics

- Ps pulse length at source
- Small source size
- Broadband
- Protons and other ion species in one bunch

Applications

- Warm Dense Matter research^[3]
- Defect engineering^[4]
- Pulsed neutron driver^[5]
- Radiobiological research

[3] P. Patel et al., PRL 91 (2003) 125004, S. Malko et al., Nature Communications 13 (2022) 2893.

[4] W. Redjem et al., Communications Materials 4 (2023) 22.

[5] M. Roth et al., PRL 110 (2013) 044802.

Laser-driven proton pulses are uniquely short and intense and are therefore of interest to study radiobiological/radiotherapeutical effects induced by ultra-high dose rates

FLASH effect: the differential sparing of healthy tissue under irradiation at ultra-high dose rates

- In-vivo study on mice irradiated with electrons
- Constant total dose but different (mean) dose rates (blue vs. red)

Mechanism of FLASH effect is not well understood

- → Laser-driven radiation sources provide uniquely high intra-pulse ("instantaneous") dose rates and are increasingly available in universityscale laser labs
- → They can contribute to FLASH research by complementing conventional accelerator facilities

Laser-driven proton pulses are uniquely short and intense and are therefore of interest to study radiobiological/radiotherapeutical effects induced by ultra-high dose rates

FLASH effect: the differential sparing of healthy tissue under irradiation at ultra-high dose rates

- In-vivo study on mice irradiated with electrons
- Constant total dose but different (mean) dose rates (blue vs. red)

Mechanism of FLASH effect is not well understood

- → Laser-driven radiation sources provide uniquely high intra-pulse ("instantaneous") dose rates and are increasingly available in universityscale laser labs
- → They can contribute to FLASH research by complementing conventional accelerator facilities

Continuous growth of radiobiological research with laser-driven proton beams: A. Yogo et al., Appl. Phys. Lett. 94:181502 (2009), S. Kraft et al., New J. Phys. 12:085003 (2010), D. Doria et al., AIP Advances 2:011209, E. Bayart et al., Sci. Rep. 9:10132 (2019), F. Hanton et al., Sci Rep. 9:1-10 (2019), F. Kroll et al., Nat. Phys. 18:316-322 (2022), J. Metzkes, et al., Sci. Rep. 13:20611 (2023), Snowmass/Journal article: R. Schulte et al., Transformative Technology for FLASH Radiation Therapy, Appl. Sciences 13:5021 (2023)

Outline

1) Cell irradiations with TNSA protons ~2 MeV RWPE1 10 PC3 Survival fraction $^{-1}$ 0 $^{-2}$ 0 $^{-2}$ 0 $^{-3}$ 10⁻² zero survival 10^{-4} 10⁻⁵ 25 0 5 10 15 20 30 Dose / Gy

2) Mouse ear irradiations with TNSA protons ~7 MeV

3) Peptide irradiations with synchrotron x-rays (ALS) 4) Peptide irradiations with TNSA protons ~7-30 MeV

Long focal length (F/65) BELLA PW beamline allows for acceleration of low divergence, high charge, < 10 MeV proton beams

J.H. Bin et al., Rev. Sci. Instrum. **90**, 053301 (2019)

Active plasma lens transport: Experiment/Simulation showed good agreement, providing ~1 cm beam for radiobiology application

10

Offline/absolute (RCF) and online/relative (ICT) diagnostics are used to determine the dose applied to every irradiated cell sample

L. Geulig et al., Rev. Sci. Instrum., **93**, 103301 (2022) J.H. Bin et al., Rev. Sci. Instrum. **90**, 053301 (2019)

Laser accelerated ions delivered by active plasma lens to cell sample differential sparing between normal and tumor cells observed

In general, the literature recognizes that oxygen concentration may play an important role in the FLASH effect

Wilson et al. Frontiers in Oncology 2020 10.3389/fonc.2019.01563

RNA sequencing of cell samples suggests a possible role of different responses of normal versus tumor cells to oxidative stress

- Cell samples were sealed off from air 24
 hrs prior and 24 hrs after irradiation
- → Artificially reducing oxygen concentration to be more similar to *in vivo* conditions
- RNA sequencing of cell samples showed differential expression of genes responsible for dealing with oxidative stress.
- \rightarrow E.g., down/up regulated in RWPE1/PC3:
 - ATF3: responsive to reactive oxygen species (ROS), which induce permanent damage in cells

Laser accelerated ions delivered by active plasma lens to cell sample differential sparing between normal and tumor cells observed

J. H. Bin et al., Sci. Rep. 12 1585 (2022)

Outline

1) Cell irradiations with TNSA protons ~2 MeV

2) Mouse ear irradiations with TNSA protons ~7 MeV

3) Peptide irradiations with synchrotron x-rays (ALS) 4) Peptide irradiations with TNSA protons ~7-30 MeV

Beamline preparations for volumetric (few mm-thick) sample irradiations at BELLA iP2

New high intensity setup (F/2.5 "iP2") for several 10 MeV TNSA beams \rightarrow deeper penetration into tissue

Beamline preparations for volumetric (few mm-thick) sample irradiations at BELLA iP2

18

Continued development of online beam monitoring with ICTs allowed for precise application of prescribed dose

First animal irradiation at BELLA with 7 MeV laser-driven protons to investigate radiation damage to mouse ear tissue in vivo shows sparing compared to x-rays

Outline

1) Cell irradiations with TNSA protons ~2 MeV

2) Mouse ear irradiations with TNSA protons ~7 MeV

3) Peptide irradiations with synchrotron x-rays (ALS)
 4) Peptide irradiations with TNSA protons ~7-30 MeV

A peptide irradiation platform was established at the Advanced Light Source (ALS) to study dose rate effects on oxidative damage to peptides

X-ray footprinting mass spectrometry used with a reductionist approach (peptides in vitro) to isolate individual components of the FLASH effect

Unmodified

A peptide irradiation platform was established at the Advanced Light Source (ALS) to study dose rate effects on oxidative damage to peptides

Dosimetry was conducted with radiochromic film

Less damage after ultra-high dose rate than conventional dose rate irradiations

Less damage after ultra-high dose rate than conventional dose rate irradiations

Less damage at lower than atmospheric oxygen content

S. Gupta et al., Radiation Research 200(6), 523-530 (2023)

Less damage after ultra-high dose rate than conventional dose rate irradiations

Less damage at low than atmospheric oxygen content

S. Gupta et al., Radiation Research 200(6), 523-530 (2023)

Less damage after ultra-high dose rate than conventional dose rate irradiations

Less damage at low than atmospheric oxygen content

Result: peptides can be used in a reductionist approach to study the damage by OH radicals under different radiation regimes and sample conditions

Outline

1) Cell irradiations with TNSA protons ~2 MeV

2) Mouse ear irradiations with TNSA protons ~7 MeV

3) Peptide irradiations with synchrotron x-rays (ALS) 4) Peptide irradiations with TNSA protons ~7-30 MeV

First peptide experiments at BELLA iP2 with ~7-30 MeV protons were conducted in April 2024

Target pos. rel. to best focus / µm

29

The stability of the higher energy TNSA source needs further improvement for systematic radbio studies

Outline

1) Cell irradiations with TNSA protons ~2 MeV

2) Mouse ear irradiations with TNSA protons ~7 MeV

3) Peptide irradiations with synchrotron x-rays (ALS) 4) Peptide irradiations with TNSA protons ~7-30 MeV

Summary

1) Cell irradiations with TNSA protons ~2 MeV

- Differential sparing of normal versus tumor tissue observed in vitro when irradiated with ultrahigh instantaneous dose rate laser-driven protons
- RNA sequencing of cell samples suggests a possible role of different responses of normal versus tumor cells to oxidative stress in ultrahigh dose rate regime

- 2) Mouse ear irradiations with TNSA protons ~7 MeV
- Reduced damage to normal tissues confirmed in vivo comparing irradiations with laser-driven proton beams to conventional dose rate x-ray
- Ongoing analysis of results aims to investigate underlying mechanisms of the sparing observed

- 3) Peptide irradiations with synchrotron x-rays (ALS) 4) Peptide irradiations with TNSA protons ~7-30 MeV
- The dose rate and oxygen dependent modification of peptides was confirmed in x-ray irradiations at the ALS versus at a conventional xray tube
- Peptides can be used in a reductionist approach to study the damage by OH radicals under different radiation regimes and sample conditions
- First peptide irradiation experiments at BELLA iP2 with ~7-30 MeV protons were conducted in April 2024, the analysis of the results is currently underway
- The stability of the higher energy TNSA source needs further improvement for systematic radbio studies

