This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

D. Bazin

Reaction Studies with the Active Target Time Projection Chamber

MICHIGAN STATE UNIVERSITY

In-beam *γ***-ray vs missing mass methods**

- In-beam γ-ray: spectroscopy relies solely on properties of beam-like residue
	- Inverse kinematics and high energy allow thick targets and small scattering angles \rightarrow **high luminosity**
	- Determination of partial cross sections needs to take into account **feeding** from higher energies
	- *• Lifetime of populated states cannot be to long (isomer)*
	- *• Cross section to ground state cannot be directly measured (again, feeding…)*
	- *• Cross section to unbound states difficult to measure (requires detection of emitted nucleon(s))*
- Missing mass spectroscopy in inverse kinematics: using the target-like residue
	- *• Direct measurement of cross sections to populated states, bound and unbound*
	- *• Lifetime of populated states doesn't matter*
	- *• But inverse kinematics turns from a friend into a foe, large ranges of energies and scattering angles*
	- ◆ *Compromise between resolution and target thickness is necessary → low luminosity*

2

- Target thickness not constrained by energy resolution
	- *• Gains of 2-3 orders of magnitude in thickness*
	- *Pure gas targets H₂, D₂ and ^{3,4}He*
	- *• Vertex and energy of each reaction measured*
- Solid angle coverage not limited by angular resolution and/or cost
	- *• Detecting recoils inside target maximizes angular coverage*
	- *• Geometrical efficiency close to 80%*
	- *• Multiple reaction channels can be measured*
- Inverse kinematics requirements
	- *• Need angular resolution < 1°*
	- *• Need energy resolution < 200 keV*

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

The promise of active targets

Beam <u>Recoils</u>

Target = Detector

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

Active Target Time Projection Chamber Solenoidal Spectrometer Apparatus for Reaction Studies

D. Bazin, NN 2024, 18-23 Aug 2024, Whistler, CA $\sum_{i=1}^{n} P_{i} = \frac{1}{n} \frac$ Signals are read from the back end of the Back end of the AT-TPC. The AT-TPC is the AT-TPC. The AT-TPC is the A
TPC. The AT-TPC. The AT-TPC is the AT-TPC. The AT-TPC is the AT-TPC is the AT-TPC. The AT-TPC is the AT-TPC is

• Complementarity of detector setups *• Si-array for > 104 pps • AT-TPC for < 104 pps* • Complementarity of

- -
	-
- facilities
	- *stability*
	-

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

• FRIB + ReA6 for isotopes far from • ATLAS + RAISOR for

isotopes ±1n ±2n

SOLARIS @ FRIB \overline{C} a me plane a ptarity of HELIOS @ ATLAS

Two dual-mode solenoidal spectrometers

- Spectroscopy of rare nuclei using "simple" reactions in inverse kinematics
- Study of near-threshold resonances and their decay modes using resonant scattering
	- *• Invariant mass method applicable when all particles from decay are detected*
- Excitation functions of astrophysical interest reactions on unstable nuclei
	- *• Beam energy loss in gas can be used to measure excitation functions*
- Collective excitations in rare nuclei
	- *• SDR and GDR probed via inelastic scattering at higher energies*
- Gamov-Teller strength in the n-p direction using (d,2He) charge exchange reactions
	- *• Using equivalence between charge-exchange cross sections and GT strength at low momentum transfer*
- Weak *β*-decay branches at very low Q-values
	- *β*-delayed proton emission from 11Be

• Gains in luminosity of 2-3 orders of magnitude without compromising resolution

Scientific themes of the AT-TPC

- Transfer reaction commissioning
	- *• 10Be(d,p)11Be, 10Be(d,d')10Be* and 10B(d,p)11B (2020@SOLARIS)*
		- *• [57] by Z. Serikow on 11Be (NS7 Thu 5:30)*
- Resonant scattering
	- \bullet ^{16} $O(\alpha, \alpha')$ ^{16} O^* (2021@SOLARIS)
		- *• Search for 16O 0+ Hoyle resonance*
	- *• 10Be(, ')10Be* (2023@SOLARIS) α α*
		- *• Search for 0+ deformed band-head resonance*

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

- Campaign on transfer reactions (2023@HELIOS)
	- *• Reactions between 14C and p target*
	- *• Reactions between 12Be and p target*
	- *• Reactions between 15C and p, d targets*
		- *• Quenching factors from transfer reactions*
	- *• Reactions between 16C and p, d, targets α*
	- *• Reactions between 7Be and d target*
		- *• Search for unbound resonances in 6Be*
- Campaign at S800 (just completed)
	- *• 32Mg(d,2He)32Na*
	- *• 11Li(p,p')*

Measurements performed since 2020

7

 \cdot Fit • Fit Vertex

- Analysis library in Python
	- *• Python: readability and "simplicity"*
	- *• Scalable: parallel processing of multiple runs*
	- *• Performant through use of Just-In-Time compiler Numba*
	- *• Pip-installable and cross-platform*
	- *• Interface with many leading analysis libraries (numpy, scipy, scikit-learn, etc)*
- Available at GitHub (https://github.com/ ATTPC/Spyral) as source code or as installable Python package (https://pypi.org/ project/attpc_spyral/)

New AT-TPC analysis package: Spyral

From Gordon McCann

- Magnetic rigidity
	- *• From curvature of track & polar angle*
- Energy loss
	- *• From charge deposited along track*
- Large dynamic range
	- *• Due to inverse kinematics*
	- *• Square-root representation*

Particle identification in AT-TPC

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

Linear dE/dx Sqrt dE/dx

Analysis by G. McCann

Inelastic scattering 10Be(d,d)10Be*

- Isoscalar dipole resonance in ¹⁰Be
	- *• Observed at 7.37 MeV from 9Be(d,p) as 3-*
	- Located near S_{α} (7.4 MeV)
	- *• Identified as 1- from angular distribution*
	- *• Best fit of angular distribution using dipole* deformation length of $\delta_1 = 0.76$ fm $=$ 0.76 Tm
	- **•** Pronounced α cluster structure (5-15% of IS-*EWSR)* γ tur ρ (5-15% of IS- γ $\frac{1}{2}$ players for the study of the interplayers between $\frac{1}{2}$
	- *• Various theories using coupling to the* continuum are able to reproduce the observed *dipole strength* considered as a combination of two valence neutrons of coupling to the 2012 core. Its ground state (g.s.) more core. Its ground state (g.s.) more core. It is ground s structure was recently validated experimentally [27].
- Submitted to PRL (J. Chen, Y. Ayyad et al.) \mathbf{r} active-target time projection chamber coupling (AT-IPC) with the Magnetial l of ¹⁰Be on deuterons has been observed up to 9 MeV

and *D. Bazin, NN 2024, 18-23 Aug 2024, Whistler, CA* 10Be, 2014, 2014, 2014, 2014, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2024, 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022, line) and the octupole (3, read dotted-dashed line) angular

- 10B contamination present in 10Be beam
- Large Q_{value}=9.23 MeV allows population of high-lying resonances in 11B
- Strong interest in resonances at around 11 MeV due to several thresholds
- *β*-decay proton emission of ¹¹Be
- AT-TPC is capable of measuring particle decay residues of 11B* resonances
- Branching ratios could inform on the structure of these resonances

10B(d,p)11B

11

Analysis of 10B(d,p)11B

Analysis by T. Schaeffeler

10B(d,p)11B* 7Li + → **4He event from 10.6 MeV peak**

• 12Be at ~12 MeV/u provided by the RAISOR separator from ATLAS 14C primary beam

- Pure ¹H₂ target at 600 Torr
- Equivalent CH₂ target thickness (number of protons): 110 mg/cm2

• Beam intensity 100 pps

• 3 days of beam exposure

- Pre-kinematics plot from estimation phase showing B ρ versus energy loss
- Kinematics lines from elastic, inelastic, (p,d) and a hint of (p,t) reactions

12Be reactions on proton target

12Be elastic and inelastic on proton

12Be(p,d)11Be

12Be(p,t)10Be

17

Kinetic Energy vs. Polar Angle

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

16C on pure D₂ target

D. Bazin, NN 2024, 18-23 Aug 2024, Whistler, CA

16C(d,p)17C to bound and unbound states

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

Analysis by Gordon McCann

- Three close-by bound states of 17C
- *• Energy resolution cannot resolve* $\overline{1}$ $\overline{$
	- *• Angular distribution for all three* \mathcal{A} and \mathcal{A} are continued in the continued of \mathcal{A}
	- Matches DWBA for $I=0$ only
- *• In contradiction with Pereira-López* 217 1/2⁺ 217 *2* 100 0 3/2⁺ B(M1)↓=1.04×10−² +*3*−*12* 332 5/2⁺ 331 *2* 100 0 3/2⁺ B(M1)↓=7.12×10−² +*127*−*96*
	- Only halo $1/2$ ⁺ state ¹⁶C(0⁺)+n populated in $\frac{1}{2}$ *reaction*) I/Z' State
	- $3/2$ ⁺ and $5/2$ ⁺ based on ¹⁶C(2⁺)+n

Analysis of 17C bound states

 10^1

 10^0

 10^{-1}

 10^{-2} -

Analysis by Gordon McCann

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

Adapted from X. Pereira-López et al., PLB 811 (2020) 135939

- Active targets such as the AT-TPC offer a breakthrough in measurements of Direct Reactions with Exotic Beams
	- *• Luminosity gain of two to three orders of magnitude compared to passive targets, while retaining comparable resolutions*
	- *Transfer reaction cross sections (~ 10 mb/sr) now accessible at 100 pps*
	- *• Solid angle coverage allows measurements of full kinematics of reactions (target-like and beam-like residues)*
- New avenues of exploration
	- Missing mass spectroscopy of exotic nuclei **further from stability** *• Exploration of unbound resonances and deformation via rotational bands • Effects of continuum via study of unbound resonances near particle*
	-
	- *decay thresholds*

Outlook

- Inner tube for rare gases (³He)
	- *• Limit cost of operation*
	- *• Allow use of faster gas in detector region*
	- *• Requires enough energy to punch through tube foil (12 µm polyamide)*
- Zero degree detector telescope
	- *• Two DSSD Si detectors backed by CsI array*
	- *• Identification of beam-like residues that scatter at small angles (~ < 10°)*
	- *• Reduce pile-up using anti-coincidence with upstream ion chamber*
	- *• Use AT-TPC in reverse configuration (like with S800)*

Upcoming upgrades

- SOLARIS experiment (Fall 2024)
	- *• np pairing in 56Ni via 56Ni(3He,p)*
- RCNP campaign (early 2025)
	- *• 6 experiments approved (d,3He)*
	- *• No magnetic field*
	- *• Rely on range for PID*
	- *• Zero degree DSSD telescope*
- Argonne campaign (late 2025)
	- *• 3 experiments approved*
	- *• HELIOS solenoid*
	- *• Zero degree DSSD telescope*

U.S. Department of Energy Office of Science **National Science Foundation** Michigan State University

AT-TPC collaboration

- Measurement of SDR and GDR in 11Li (Y. Ayyad)
	- *• AT-TPC coupled to S800 spectrometer*
	- *• FRIB 11Li beam at 55 MeV/u ~ 10,000 pps*
	- *• Pure H2 and H2+CF4 (10%) mixtures at 600 Torr*
	- *• S800 set on 9Li (red) and 8,7Li,4He (blue)*
	- *• Analysis of proton tracks stopped in gas*
	- *• Cutoff of GDR due to range acceptance*
- Prior to this experiment
	- *• Measurement of GT strength in N=20 Island of Inversion using 32Mg, 33Al(d,2He) charge-exchange reaction (R. Zegers)*

Last minute scoop!

Some entertaining events…

