

Reaction Studies with the Active Target Time Projection Chamber

MICHIGAN STATE UNIVERSITY

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

D. Bazin

In-beam γ -ray vs missing mass methods

- In-beam γ -ray: spectroscopy relies solely on properties of beam-like residue
 - Inverse kinematics and high energy allow thick targets and small scattering angles \rightarrow high luminosity
 - Determination of partial cross sections needs to take into account **feeding** from higher energies
 - Lifetime of populated states cannot be to long (**isomer**)
 - Cross section to ground state cannot be directly measured (again, feeding...)
 - Cross section to **unbound states** difficult to measure (requires detection of emitted nucleon(s))
- Missing mass spectroscopy in inverse kinematics: using the target-like residue
 - Direct measurement of cross sections to populated states, **bound and unbound**
 - Lifetime of populated states doesn't matter
 - But inverse kinematics turns from a friend into a **foe**, large ranges of energies and scattering angles • Compromise between **resolution** and target **thickness** is necessary \rightarrow **low luminosity**

- Target thickness not constrained by energy resolution
 - Gains of 2-3 orders of magnitude in thickness
 - Pure gas targets H₂, D₂ and ^{3,4}He
 - Vertex and energy of each reaction measured
- Solid angle coverage not limited by angular resolution and/or cost
 - Detecting recoils inside target maximizes angular coverage
 - Geometrical efficiency close to 80%
 - Multiple reaction channels can be measured
- Inverse kinematics requirements
 - Need angular resolution < 1°
 - Need energy resolution < 200 keV

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

The promise of active targets

Recoils Beam

Target = Detector

Active Target Time Projection Chamber

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

AT-TPC @ SOLARIS

Solenoidal Spectrometer Apparatus for Reaction Studies

Two dual-mode solenoidal spectrometers

SOLARIS @ FRIB

- facilities
 - stability

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

 Complementarity of detector setups • Si-array for $> 10^4$ pps • *AT-TPC* for < 10⁴ pps Complementarity of

• FRIB + ReA6 for isotopes far from

• ATLAS + RAISOR for isotopes ±1n ±2n

HELIOS @ ATLAS

Scientific themes of the AT-TPC

- Spectroscopy of rare nuclei using "simple" reactions in inverse kinematics
 - Gains in luminosity of 2-3 orders of magnitude without compromising resolution
- Study of near-threshold resonances and their decay modes using resonant scattering
 - Invariant mass method applicable when all particles from decay are detected
- Excitation functions of astrophysical interest reactions on unstable nuclei
 - Beam energy loss in gas can be used to measure excitation functions
- Collective excitations in rare nuclei
 - SDR and GDR probed via inelastic scattering at higher energies
- Gamov-Teller strength in the n-p direction using (d,²He) charge exchange reactions
 - Using equivalence between charge-exchange cross sections and GT strength at low momentum transfer
- Weak β -decay branches at very low Q-values
 - β -delayed proton emission from ¹¹Be

Measurements performed since 2020

- Transfer reaction commissioning
 - ¹⁰Be(d,p)¹¹Be, ¹⁰Be(d,d')¹⁰Be* and
 ¹⁰B(d,p)¹¹B (2020@SOLARIS)
 - [57] by Z. Serikow on ¹¹Be (NS7 Thu 5:30)
- Resonant scattering
 - ${}^{16}O(\alpha, \alpha'){}^{16}O^*$ (2021@SOLARIS)
 - Search for ¹⁶O O⁺ Hoyle resonance
 - ${}^{10}Be(\alpha, \alpha'){}^{10}Be^*$ (2023@SOLARIS)
 - Search for 0+ deformed band-head resonance

- Campaign on transfer reactions (2023@HELIOS)
 - Reactions between ¹⁴C and p target
 - Reactions between ¹²Be and p target
 - Reactions between ¹⁵C and p, d targets
 - Quenching factors from transfer reactions
 - Reactions between ¹⁶C and p, d, α targets
 - Reactions between ⁷Be and d target
 - Search for unbound resonances in ⁶Be
- Campaign at S800 (just completed)
 - ³²Mg(d,²He)³²Na
 - ¹¹Li(p,p')

New AT-TPC analysis package: Spyral

- Analysis library in Python
 - Python: readability and "simplicity"
 - Scalable: parallel processing of multiple runs
 - Performant through use of Just-In-Time compiler Numba
 - Pip-installable and cross-platform
 - Interface with many leading analysis libraries (numpy, scipy, scikit-learn, etc)
- Available at GitHub (https://github.com/ ATTPC/Spyral) as source code or as installable Python package (https://pypi.org/ project/attpc_spyral/)

From Gordon McCann

D. Bazin, NN 2024, 18-23 Aug 2024, Whistler, CA

 Fit Fit Vertex

Particle identification in AT-TPC

- Magnetic rigidity
 - From curvature of track & polar angle
- Energy loss
 - From charge deposited along track
- Large dynamic range
 - Due to inverse kinematics
 - Square-root
 representation

U.S. Department of Energy Office of Science National Science Foundation Michigan State University Linear dE/dx

Sqrt dE/dx

Analysis by G. McCann

Inelastic scattering ¹⁰Be(d,d)¹⁰Be*

- Isoscalar dipole resonance in ¹⁰Be
 - Observed at 7.37 MeV from ⁹Be(d,p) as 3⁻
 - Located near S_{α} (7.4 MeV)
 - Identified as 1⁻ from angular distribution
 - Best fit of angular distribution using dipole deformation length of δ_1 =0.76 fm
 - Pronounced α cluster structure (5-15% of IS-EWSR)
 - Various theories using coupling to the continuum are able to reproduce the observed dipole strength
- Submitted to PRL (J. Chen, Y. Ayyad et al.)

- ¹⁰B contamination present in ¹⁰Be beam
- Large Q_{value}=9.23 MeV allows population of high-lying resonances in ¹¹B
- Strong interest in resonances at around 11 MeV due to several thresholds
- β -decay proton emission of ¹¹Be
- AT-TPC is capable of measuring particle decay residues of ¹¹B* resonances
- Branching ratios could inform on the structure of these resonances

$^{10}B(d,p)^{11}B$

D. Bazin, NN 2024, 18-23 Aug 2024, Whistler, CA

11

Analysis of ¹⁰B(d,p)¹¹B

Analysis by T. Schaeffeler

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

$^{10}B(d,p)^{11}B^* \rightarrow ^{7}Li + ^{4}He event from 10.6 MeV peak$

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

¹²Be reactions on proton target

 ¹²Be at ~12 MeV/u provided by the RAISOR separator from ATLAS ¹⁴C primary beam

Beam intensity 100 pps

- Pure ¹H₂ target at 600 Torr
- Equivalent CH₂ target thickness (number of protons): 110 mg/cm²

• 3 days of beam exposure

- Pre-kinematics plot from estimation phase showing $B\rho$ versus energy loss
- Kinematics lines from elastic, inelastic, (p,d) and a hint of (p,t) reactions

¹²Be elastic and inelastic on proton

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

12Be(p,d)11Be

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

12Be(p,t)10Be

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

D. Bazin, NN 2024, 18-23 Aug 2024, Whistler, CA

17

Kinetic Energy vs. Polar Angle

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

¹⁶C on pure D₂ target

¹⁶C(d,p)¹⁷C to bound and unbound states

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Analysis by Gordon McCann

Analysis of ¹⁷C bound states

 10^{1}

10⁰

 10^{-1}

 10^{-2} ·

_{dΩcM} (mb/sr)

- Three close-by bound states of ¹⁷C
 - Energy resolution cannot resolve
 - Angular distribution for all three
 - Matches DWBA for I=0 only
 - In contradiction with Pereira-López
 - Only halo 1/2+ state ¹⁶C(0+)+n popula reaction
 - 3/2+ and 5/2+ based on ¹⁶C(2+)+n

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Analysis by Gordon McCann

Adapted from X. Pereira-López et al., PLB 811 (2020) 135939

Outlook

- Active targets such as the AT-TPC offer a breakthrough in measurements of Direct Reactions with Exotic Beams
 - Luminosity gain of two to three orders of magnitude compared to passive targets, while retaining comparable resolutions
 - Transfer reaction cross sections (~ 10 mb/sr) now accessible at **100 pps**
 - Solid angle coverage allows measurements of full kinematics of reactions (target-like and beam-like residues)
- New avenues of exploration
 - Missing mass spectroscopy of exotic nuclei further from stability • Exploration of unbound resonances and **deformation** via rotational bands • Effects of continuum via study of unbound resonances near particle

 - decay thresholds

Upcoming upgrades

- Inner tube for rare gases (³He)
 - Limit cost of operation
 - Allow use of faster gas in detector region
 - Requires enough energy to punch through tube foil (12 μm polyamide)
- Zero degree detector telescope
 - Two DSSD Si detectors backed by CsI array
 - Identification of beam-like residues that scatter at small angles (~ < 10°)
 - Reduce pile-up using anti-coincidence with upstream ion chamber
 - Use AT-TPC in reverse configuration (like with S800)

- SOLARIS experiment (Fall 2024)
 - np pairing in ⁵⁶Ni via ⁵⁶Ni(³He,p)
- RCNP campaign (early 2025)
 - 6 experiments approved (d,³He)
 - No magnetic field
 - Rely on range for PID
 - Zero degree DSSD telescope
- Argonne campaign (late 2025)
 - 3 experiments approved
 - HELIOS solenoid
 - Zero degree DSSD telescope

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

AT-TPC collaboration

Last minute scoop!

- Measurement of SDR and GDR in ¹¹Li (Y. Ayyad)
 - AT-TPC coupled to S800 spectrometer
 - FRIB ¹¹Li beam at 55 MeV/u ~ 10,000 pps
 - Pure H_2 and H_2 +CF₄ (10%) mixtures at 600 Torr
 - S800 set on ⁹Li (red) and ^{8,7}Li,⁴He (blue)
 - Analysis of proton tracks stopped in gas
 - Cutoff of GDR due to range acceptance
- Prior to this experiment
 - Measurement of GT strength in N=20 Island of Inversion using ³²Mg, ³³Al(d,²He) charge-exchange reaction (R. Zegers)

Some entertaining events...

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

