

Probing heavy element nucleosynthesis through electromagnetic observations

Gabriel Martínez-Pinedo 14th International Conference on Nucleus Nucleus Collisions (NN2024), Whistler, BC Canada August 18-23, 2024

TECHNISCHE UNIVERSITÄT DARMSTADT

HELMHOLTZ

Benchmark against observations:

- Indirect: Solar and stellar abundances (contribution many events, chemical evol.)
- Direct: Kilonova electromagnetic emission (single event, sensitive Atomic and Nuclear Physics)

Kilonova: signature of the r-process

GSIFA

- Electromagnetic counterpart to Gravitational Waves
- Diagnostics physical processes at work during merger
- Direct probe of the formation r-process nuclei

HELMHOLTZ

Information elements
 produced single event

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

Pipeline for r-process in mergers

14.5

14

13.5

13

12.5

12 11.5

11

10

9.5

15.167 ms

50

10.5

- Properties ejecta: proton-tonucleon ratio (Y_e)
- Role of equation of state
- Role of neutrinos

x [km] Bauswein et al, ApJ 773, 78 (2013)

Infer components ejecta (Y_{e})

 Physics of neutron-rich and heavy nuclei

forward modelling

r-process

Atomic data

backward modelling

Nd II

• Atomic data

Nuclear data

- Radioactive transfer modelling
- Thermalization decay products (Barnes+ 2016, Kasen+ 2019)
- Spectra formation: atomic data depends on ejecta evolution (LTE vs NLTE)

- Which r-process elements are produced in mergers?
 Are mergers the (main) r-process site?
 - Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

50

40

30

20

10

-10

-30

-40

-50 -50

y [km]

Nuclear physics input: beta-decay half-lives

- Beta-decay half-lives determine the speed at which heavy elements are build starting from light ones
- N > 126 Half-lives have a strong impact on the position of the A ~ 195 peak

Kilonova modelling

- Complete transition data: total opacity
- Color evolution: High vs Low opacity material
- Presence of Lanthanides/Actinides (high opacity)

- Accurate data
 - LTE: line list bound-bound transitions
 - NLTE: + electron ion and photoionization cross sections, recombination coefficients
- Several elements observed Sr (Watson+22), Y, Zr, La, Ce (Domoto+22, Gillanders+23, Sneppen+23)

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

Available experimental data

57 La Lanthanum 138.90547	Cerium M0.116	59 Praseodymium 540.90766	⁶⁰ Nd Neodymium 144.242	Promethium	62 Sm Samarium 150.36	63 Eu Europium 153,964	64 Gadolinium 15725	65 Tb Terbium 158,92535	66 Dy Dysprosium 162,500	67 Ho Holmium	68 Erbium 197259	69 Tm Thulium 168,93422	70 Yb Ytterbium	Lutetium
Actinium	90 Thorium	Protactinium	92 Uranium	P3 Np Neptunium	94 Plutonium	95 Americium	96 Cm Curium	97 Bk Berkelium	98 Californium	99 Es Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

- Energies and transition probabilities between many levels required
- Systematic improvement of atomic data possible with the use of experimental data or *ab initio* calculations for few low lying levels

well calibrated atomic opacities

HELMHOLTZ

10000

8000

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

0.00

2000

4000

6000

temperature [K]

Lanthanide Opacities

HELMHOLTZ

HELMHOLTZ

Neutron star mergers: Different ejection mechanisms

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

Dynamical ejecta (simulations)

- Initially dynamical ejecta was assumed to be very neutron rich ($Y_e \leq 0.1$).
- Starting with the work of Wanajo et al 2014, several studies have shown that weak processes modify the neutron-toproton ratio
- Largest impact in the polar regions

no neutrinos

10-

10⁻²

10

10-

10⁻⁵

10⁻⁶

 10^{-7}

11

60

80

100

Abundance at 1 Gyr

140

Mass number, A

Self-consistent 3D radiative transfer

- Monte Carlo 3D radiative transfer using the ARTIS code. <u>https://github.com/artis-mcrt/artis</u>
- Matter distribution based on SPH Dynamical ejecta (0.005 M_{\odot})
- LTE simulation: follows 2591 nuclei (283 ions with gamma-ray transport and electron thermalization, 44 millions atomic transitions lines) AD1: Japan-Lithuania database (HULLAC) Z=28-88, Tanaka+ 2020 AD2: AD1 + calibrated lines for Sr, Y, and Zr, Kurucz 2018

Shingles et al, ApJ 954, L41 (2023)

DARMSTA

GSI

Angular dependence spectra

Shingles et al, ApJ 954, L41 (2023)

HELMHOLTZ

Comparison AT2017gfo

HELMHOLTZ

Similar spectral evolution that AT2017gfo once differences in brightness are accounted Shingles et al, ApJ 954, L41 (2023)

Asymmetry observables

Temperature [K]

3000

3100

3200

3300

3400

2900

Line-of-sight velocity

- Strong asymmetry observables
- Need of further observations

Shingles et al, ApJ 954, L41 (2023)

2600

2700

Long term merger simulations

Long-term simulations with neutron star lifetimes 0.1-1 s and describe all components of the ejecta: dynamical, NS-torus ejecta, and final viscous ejecta from BH torus.

End to end kilonova models

- Based on grey opacities using approximate radiative transfer model • (generalization ALCAR neutrino module)
- Promising agreement with AT2017gfo after times of several days ullet
- Accounting for all ejecta components fundamental to reproduce light curve

Nucleosynthesis beyond iron

- Origin p-nuclei unclear
- Can neutrino-nucleus reactions help producing p-nuclei?

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

The vr-process: Production of p-nuclei from r-process seeds

- Novel nucleosynthesis process that operates under strong neutrino fluxes
- Sequence of neutron captures and charged-current neutrino-nucleus reactions.
- Production of p-nuclei from neutron-rich nuclei.
- May require high magnetic fields as found in magnetars (see arXiv:2402.06003)
- Experimental constraints to neutrino-nucleus cross sections are necessary

relative abundances

Summary

- Multi-messenger observations (Gravitational and Electromagnetic waves) from binary neutron star mergers provide unique opportunities to study the production of heavy elements:
 - Neutron star mergers identified as one astrophysical site where the r-process operates
 - Kilonova observations provide direct evidence of the "in situ operation of the r-process"
 - 3D radiative transfer allows to benchmark models with observations.
- Challenges:
 - Impact of weak processes and EoS in the ejecta properties
 - Improved nuclear and atomic input
 - Kilonova spectral modelling
- *vr*-process: new mechanism production p-nuclei

Collaborators

Ciências ULisboa

UNIVERSITÄT BIELEFELD

Max-Planck-Institut für Astrophysik

A. Bauswein, C. Collins, A. Flörs,
O. Just, G. Leck, L. Shingles,
N. Rahman, V. Vijayan, Z. Xiong

P. Amaro, J. P. Marques, J. M. Sampaio, **R. Silva**

S. Sim

- J. Deprince, M. Godefroid, S. Goriely
- H. Carvajal, P. Palmeri, P. Quinet

C. Robin

S. Giuliani, L. Robledo

A. Sieverding