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Fluid dynamics

long distances, long times or strong enough interactions
quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T , µ)
shear and bulk viscosity η, ζ
heat conductivity
relaxation times
heavy quark diffusion coefficient κn

fixed by microscopic properties encoded in Lagrangian LQCD
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High energy nuclear collisions
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p + πbulk)∆
µν + πµν

Nµ = n uµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T , µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply evolution
equations for

energy density ε

uµ∂µε+ (ε+ p + πbulk)∇µuµ + πµν∇µuν = 0

fluid velocity uµ

(ε+ p + πbulk)uµ∇µuν +∆νµ∂µ(p + πbulk) + ∆ν
α∇µπ

µα = 0

particle number density n

uµ∂µn + n∇µuµ +∇µν
µ = 0
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Constitutive relations

[Israel & Stewart]

Second order relativistic fluid dynamics:
equation for shear stress πµν

τshear Pρσ
αβ uµ∇µπ

αβ + πρσ + 2ηPρσα
β ∇αuβ + . . . = 0

with shear viscosity η(T , µ)
equation for bulk viscous pressure πbulk

τbulk uµ∂µπbulk + πbulk + ζ ∇µuµ + . . . = 0

with bulk viscosity ζ(T , µ)
equation for baryon diffusion current νµ

τheat ∆
α
β uµ∇µν

β + να + κ

[
nT
ε+ p

]2

∆αβ∂β
( µ

T

)
+ . . . = 0

with heat conductivity κ(T , µ)
non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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dissipative fluid equations can be of hyperbolic type
characteristic velocities depend on fluid fields
need |λ(j)| < c for relativistic causality
works when relaxation times are large enough
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Bjorken boost invariance
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How does the fluid velocity look like?
Bjorkens guess: vz(t, x, y, z) = z/t
leads to an invariance under Lorentz-boosts in the z-direction
use coordinates τ =

√
t2 − z2, x, y, η = arctanh(z/t)

Bjorken boost symmetry is reasonably accurate close to mid-rapidity η ≈ 0
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Transverse expansion

for central collisions (r =
√

x2 + y2)

ε = ε(τ, r)

initial pressure gradient leads to radial flow(
vx
vy

)
=

(
x
y

)
f (τ, r)
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Non-central collisions

pressure gradients larger in reaction plane
leads to larger fluid velocity in this direction
more particles fly in this direction
can be quantified in terms of elliptic flow v2

particle distribution

dN
dφ =

N
2π

[
1 + 2

∑
m

vm cos (m (φ− ψR))

]

symmetry φ→ φ+ π implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function
normalized two-particle correlation function

C(φ1, φ2) =
〈 dN

dφ1
dN
dφ2

〉events

〈 dN
dφ1

〉events〈 dN
dφ2

〉events
= 1 + 2

∑
m

v2
m cos(m (φ1 − φ2))

surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

deviations from symmetric initial energy density distribution from
event-by-event fluctuations
one example is Glauber model
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Thermodynamics of QCD
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2+1+1 flavor EoS from lattice

Figure S7: The lattice result for the 2+1+1 flavor QCD pressure together with the fitted value of the
g6 order. We included the charm mass at tree-level. The perturbative result agrees with the data from
about 500 MeV temperature. Using the same fitted coe�cient we also calculated the e↵ect of the bottom
quark with the same method. The blue curve shows the EoS including the bottom contribution.

S4.1 The 2+1+1 flavor QCD equation of state

Now we show the complete result obtained from nf = 2+ 1+ 1 lattice QCD. Figure S8 depicts the trace
anomaly (left panel) and pressure (right panel). For comparison the 2+1 flavor results are also shown.

Plotting p/T 4 (which is the normalized free energy density), we can compare our result to other
approaches. At low temperatures the Hadron Resonance Gas model (using the 2014 PDG spectrum) gives
a good description of the lattice data. This was already observed in Ref. [S18].

In Ref. [S18] we gave a simple parametrization for the 2+1 flavor equation of state. Here we update
the 2+1 flavor parameters and provide a parametrization that covers the 100-1000 MeV temperature
range and describes the 2+1+1 lattice data, i.e. including the e↵ect of the charm quark. As before, the
parametrizing formula reads

I(T )

T 4
= exp(�h1/t� h2/t

2) ·

✓
h0 + f0

tanh(f1 · t+ f2) + 1

1 + g1 · t+ g2 · t2

◆
, (S11)

with t = T/200 MeV. The parameters are given in Table. S1, the resulting curves are shown in Fig. S8.
For completeness the nf = 2 + 1 parametrization is also shown.
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Figure S8: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories in our parametriza-
tion Eq. (S11). We also show the Hadron Resonance Gas model’s prediction for comparison.
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Figure 3: The thermodynamic equation of state p(T ) as parametrized in equation (5.1). We show energy

density ✏, pressure p and the trace anomaly ✏ � 3 in units of T 4 in the left panel and the squared sound

velocity c2s(T ) in the right panel. Lattice QCD data underlying the fit at high temperatures are taken from

ref. [45] and ref. [46], the hadron resonance gas approximation used at low temperatures was calculated

following ref. [47]. In the transition region both results were smoothly connected.

The parametrization of pressure as a function of temperature is taken as the following combination of

exponential and rational functions,

p(T )

T 4
= exp

"
�

c2

(T/Tc)
�

d2

(T/Tc)2

#
2

66664

(16 + 21
2 Nf )⇡2

90
+ a1

✓
Tc

T

◆
+ a2

✓
Tc

T

◆2

+ a3

✓
Tc

T

◆3

+ a4

✓
Tc

T

◆4

1 + b1

✓
Tc

T

◆
+ b2

✓
Tc

T

◆2

+ b3

✓
Tc

T

◆3

+ b4

✓
Tc

T

◆4

3

77775
.

(5.1)

Note that for asymptotically large temperatures p(T ) approaches the result for free gluons and Nf free

quarks. Below we take Nf = 3 and Tc = 154 MeV. The best fit results for the fit parameter aj , bj , c

and d are reported in table 1. The exponential terms in the prefactor in eq. (5.1) help in particular

a1 -0.752335 a2 -1.8151 a3 -2.83317 a4 4.20517 c 0.547521

b1 -1.68716 b2 7.83336 b3 -13.3421 b4 9.22752 d 0.0148163

Table 1: Best fit parameter for the thermodynamic equation of state as parametrized in equation (5.1).

to reproduce the hadron resonance gas regime while the rational term parametrizes the crossover to a

quark-guon plasma.

In the left panel of fig. 3 we show the resulting energy density ✏, pressure p and trace anomaly ✏�3p in

units of T 4 as a function of temperature. The right panel shows the square of the thermodynamic velocity of

sound c2s as a function of temperature. The latter is particularly important for the fluid dynamic evolution

and determines for example the characteristic velocities in the absence of dissipative stresses.

To develop the fit (5.1) we have considered the trace anomaly ✏ � 3p. In fig. 4 we show our fit (solid

curve), together with available numerical data from the HotQCD collaboration [46] (for 2+1 quark flavors,

symbols with error bars), an analytic parametrization of lattice QCD data from ref. [45] (for 2 + 1 + 1

– 13 –

[Borsányi et al. (2016), similar Bazavov et al. (2014)] [Floerchinger, Grossi, Lion (2019)]

equation of state at vanishing chemical potential is well known now
at large temperature lattice QCD
at small temperature hadron resonance gas approximation
extensions to non-zero chemical potentials e. g. by Taylor expansion
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Fluid dynamic description of heavy ion collisions

FluiduM: Fluid dynamics of heavy ion collisions with Mode expansion
[Floerchinger & Wiedemann, PLB 728, 407 (2014), PRC 88, 044906 (2013), 89, 034914 (2014)]
[Floerchinger, Grossi & Lion, PRC 100, 014905 (2019)]
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background-fluctuation splitting + mode expansion
resonance decays included
[Mazeliauskas, Floerchinger, Grossi & Teaney, EPJC 79, 284 (2019)]

allows fast and precise comparison between theory and experiment
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Parameter estimation from theory-experiment comparisson

[Vermunt, Seemann, Dubla, Floerchinger, Grossi, Kirchner, Masciocchi, Selyuzhenkov, PRC 108,
064908 (2023)]

fluid models have parameters
can be determined with Bayesian analysis from data
here based on transverse momentum spectra of pions, kaons, protons
data from Pb-Pb (2.76 TeV), Pb-Pb (5.02 TeV), Xe-Xe (5.44 TeV)

MAPPING PROPERTIES OF THE QUARK GLUON PLASMA … PHYSICAL REVIEW C 108, 064908 (2023)

FIG. 6. The median values and 68% confidence intervals of the marginalized Bayesian posterior distributions for each model parameter
across all analyzed configurations. Note that, due to the collision system dependency, the Norm and τ0 parameters for Xe-Xe and Pb-Pb at√

sNN = 5.02 TeV are reported only in Table II. The configuration involving only pions and kaons is depicted in a lighter color, reflecting the
lack of convergence to a single minimum in the MCMC procedure for this specific setup.

multistrange baryons are more sensitive to changes in the
transition temperature between the fluid evolution and the
hadronic transport phases. This aligns with proposals in the
literature indicating that strange hadrons may undergo chemi-
cal freeze-out earlier than nonstrange particles [77–80].

C. Exploring variations in the analysis setup

Figure 6 summarizes the previously discussed variations
by reporting the median values and 68% confidence in-
tervals of the marginalized Bayesian posterior distributions
for each model parameter. Several smaller variations, ex-
clusively applied to the Pb-Pb collision system at

√
sNN =

2.76 TeV, are included as well. We assessed the effect of
(i) using a constant shear viscosity to entropy ratio instead
of the temperature-dependent version; (ii) including pions
with transverse momentum below 500 MeV/c; (iii) increasing
the transverse momentum limit to 3 GeV/c for all parti-
cle species; (iv)–(vi) including (ζ/s)peak (150–200 MeV),
(ζ/s)width (10–100 MeV), or τshear (aslope = 0–10 MeV−1) as
the seventh model variable in the MCMC procedure; and
(vii)–(ix) considering only pions and kaons, pions and pro-
tons, and kaons and protons.

Overall, the values of the extracted model parameters
demonstrate a reasonable stability across all configurations.
When considering a constant shear viscosity to entropy ratio,
the results remain consistent with those obtained from the
temperature-dependent formulation [Eq. (3)]. The observation
that the constant value for η/s closely resembles (η/s)min
in the temperature-dependent parametrization suggests that,
in the latter case, we are primarily sensitive to the region
close to the phase transition. The inclusion of low transverse
momentum pions impacts several model variables. Specifi-
cally, it leads to a substantially smaller τ0, marginally lower
freeze-out temperatures, and a slightly larger (ζ/s)max. Given
the expected nonhydrodynamic origin of the enhancement in
the low-pT pion spectra [72–76], this underscores the im-
portance of restricting the analysis within the range where

hydrodynamics is expected to be applicable. Increasing the
upper pT limit, instead, yields a notable impact on the (η/s)min
value. This parameter now tends to favor lower values, nearing
the theoretical lower bound of 1/4π derived from AdS-CFT.
This behavior likely arises from the shear correction in the
computation of the final particle spectrum that scales with
p2

T [28,81], i.e., expanding the analyzed pT interval includes
points that are much more sensitive to the shear corrections
and we would thus expect a change in the (η/s)min parameter.

The introduction of (ζ/s)peak, (ζ/s)width, or aslope as the
seventh model variable in the MCMC procedure has a neg-
ligible impact on the values of the original six parameters.
These parameters remain consistent with those obtained from
the central Pb-Pb

√
sNN = 2.76 TeV configuration. However,

it is important to note that none of the posterior distribu-
tions for these seventh model parameters converge; all three
distributions touch the upper limit of their respective inter-
vals. This emphasizes the need for first-principle calculations
of the bulk viscosity which could replace the currently as-
sumed Lorentzian form. Finally, excluding one of the three
particle species (pions, kaons, or protons) results in small
changes in the Norm and freeze-out temperatures, but they
are still compatible within (1–2)σ . When considering only
pions and kaons, the posterior distributions exhibit a dual
structure, where one component aligns well with the central
Pb-Pb

√
sNN = 2.76 TeV configuration, while the other shows

significantly different values. Due to this configuration’s lack
of convergence, we choose to exclude it from further analysis.

D. Discussion and comparison to experimental data

We start the discussion by comparing our extracted model
parameters in Fig. 6 with those obtained from analogous
Bayesian inference analyses. The values for (ζ/s)max are
in agreement with analyses employing the same functional
form [9,10,15,16,19,20], and are compatible [18] or lower by
(2–3)σ [11,12,17] when compared to Bayesian analyses that
introduce a slight adjustment to allow for an asymmetry in

064908-11
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Particle production at the Large Hadron Collider

[Vermunt, Seemann, Dubla, Floerchinger, Grossi, Kirchner, Masciocchi, Selyuzhenkov, PRC 108,
064908 (2023)]L. VERMUNT et al. PHYSICAL REVIEW C 108, 064908 (2023)

FIG. 7. The top panels display the transverse momentum spectra for pions, kaons, and protons in the 0–5% centrality class for the three
collision systems. The spectra as simulated with the FLUIDuM + FASTRESO framework, using the extracted model parameters from our
Bayesian analysis (see Fig. 6), are compared with experimental data from the ALICE Collaboration [32,34,35]. The bottom panels present the
respective ratios between theory and experimental data for each hadron species. Note the experimental uncertainties are not taken into account
in the ratio.

temperature around the peak. Regarding the (η/s)min param-
eter, all other Bayesian analyses typically find values around
0.10 [9–20], while our posterior distributions hint at values
beyond the upper bound of 0.52. We remind the reader that we
attribute this behavior to two factors: (i) a limited sensitivity
of the current observables to the shear viscosity of the system
and (ii) a different strategy regarding the hadronic phase of
the system. On account of reason (ii), a direct comparison of
our extracted freeze-out temperatures with those from other
Bayesian analyses seems unfeasible. These analyses typically
employ a single freeze-out temperature Tswitch (converging
to values between 130 and 160 MeV), while their hadronic
afterburner continues to evolve until yields and momentum
distributions cease changing. However, since most of the
hadronic yields vary by less than 20% as a consequence of
inelastic collisions in the afterburner phase, the switching
and chemical freeze-out temperature are typically associated
with each other [82]. In this context, it is noteworthy that
we obtain values that are compatible with the switching
temperatures found in Refs. [17,18], 5–15 MeV lower with
respect to Refs. [13–16,19,20], and slightly higher than values
in Refs. [11,12]. Instead, the statistical hadronization model
of Ref. [62] suggests chemical freeze-out temperatures of
approximately 10 MeV higher, while blast-wave fits to the
pT distributions of identified hadrons in central collisions
estimate kinematic freeze-out temperatures about 20 MeV
lower than ours [32]. The extracted τ0 values for the Pb-Pb√

sNN = 2.76 TeV system align roughly with the time of the
prehydrodynamic phase in the other Bayesian analyses, typ-
ically spanning 0.3–1.0 fm/c [9–17,19,20]. However, due to

the correlation with the Norm parameter [as given in Eq. (1)],
our consideration of this parameter as system dependent (re-
sulting in significantly larger values for the Xe-Xe and Pb-Pb√

sNN = 5.02 TeV collision systems), and the absence of a
free-streaming phase in our setup, we would refrain from
interpreting them as being the same parameter in a physical
sense.

In Fig. 7, we translate the values of our model parameters
from Fig. 6 into a final FLUIDuM + FASTRESO prediction
for the pion, kaon, and proton (1/2π pT)(1/Nev) d2N/dy dpT
spectra in the 0–5% centrality class for the three collision
systems. For the analysis configurations for which the MCMC
procedure was only run for the Pb-Pb

√
sNN = 2.76 TeV sys-

tem, we use the Norm and τ0 from Table II for the calculations
of Pb-Pb at

√
sNN = 5.02 TeV and Xe-Xe at

√
sNN = 5.44

TeV. The theoretical uncertainty is estimated as the full en-
velope of the various trials.4 The simulations exhibit good
quantitative agreement with experimental measurements. The
theoretical uncertainties are approximately 20% for the Pb-
Pb

√
sNN = 2.76 TeV system and about 40% for the Xe-Xe

and
√

sNN = 5.02 TeV Pb-Pb systems. This difference can
be attributed to the fact that we primarily explored variations
of the analysis configuration using the Pb-Pb

√
sNN = 2.76

TeV system. In future work, where we will include anisotropic
flow observables and explore additional centrality classes, we
intend to conduct systematic variations for all three systems

4Excluding the “pT < 3 GeV/c” and “only π and K” cases as
previously discussed.

064908-12

overall good description
some deviations for pions at small pT
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Event-by-event fluid simulations

[Gale, Jeon, Schenke, Tribedy, Venugopalan (2013)]

the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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IP-Glasma model.
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fluctuating initial conditions from different models
overall good agreement with experimental data reached
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Collective behavior in large and small systems
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flow coefficients from higher order cumulants v2{n} agree:
→ collective behavior
elliptic flow signals also in pPb and pp collisions
this conference: hints for v2 even in high-multiplicity e+e− collisions
[Chris McGinn, Talk on Monday]
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Elliptic flow for a few interacting atoms

[S. Floerchinger, G. Giacalone, L. H. Heyen, L. Tharwat, PRC 105, 044908 (2022)]
[S. Brandstetter, P. Lunt, C. Heintze, G. Giacalone, L. H. Heyen, M. Gałka, K. Subramanian, M.
Holten, P. M. Preiss, S. Floerchinger, S. Jochim, 2308.09699]
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FIG. 1. Elliptic flow of ten fermions. We prepare 5+5 strongly interacting spin up and down atoms (black/white dots)
in the ground state of an elliptically shaped trap. We measure their positions (a-c) or momenta (e-g). The two dimensional
histograms show the density distribution, obtained from averaging over many experimental realizations of the same quantum
state. The initial system has an elliptic density distribution in real space and a round Fermi surface in momentum space (see
a and e). We study the expansion after switching off the trap (b-c, f-g) and observe the inversion of the initial aspect ratio in
real space and the build up of momentum anisotropy. The dashed black circle in e-g shows the Fermi momentum calculated
from the real space peak density. d Root mean square of the atom positions �rx, �ry as a function of tint. The expectation
assuming ideal hydrodynamic evolution of the corresponding many-body system with the same initial density is shown as a
reference (red lines). The inset shows the anisotropy �rx/�ry of the expanding density. The red line corresponds to the ideal
hydrodynamic expansion. h Root mean square value �kx, �ky of the momenta of the atoms as a function of tint. The triangles
show the Fermi momentum k̃F, rescaled to the geometric mean of �kx, �ky at initial time tint = 0 µs. The connecting lines
serve as a guide to the eye. In the inset, the difference of �k2

x and �k2
y shows the build up of momentum anisotropy during

the interacting expansion. The ideal hydrodynamic expansion (red line) and the asymptotic long time limit derived from the
real space data (red dashed line) provide a reference. All error bars show the 95% confidence interval, determined using a
bootstrapping technique.

1/
p
n0 ⇡ 1.3 µm. These length scales are estimated for94

the non-interacting system, but are on the same order95

of magnitude in the interacting case. Assuming a ki-96

netic description, the unitary limit would constrain the97

minimum mean free path to be on the order of the inter-98

particle spacing.99

The strength of the attractive interactions can be100

tuned using the magnetic Feshbach resonance [21]. It101

is quantified by the dimensionless interaction parameter102

ln(k0
Fa2D), that relates the initial interparticle spacing103

(proportional to the inverse of the Fermi wave vector k0
F)104

to the 2D scattering length a2D [22, 23].105

After preparing the system, we remove the horizontal106

confinement, while keeping the vertical 2D confinement.107

We let the atoms expand for an interacting expansion108

time tint. At tint, we instantaneously switch off inter-109

actions by a two-photon Raman transition [24]. Subse-110

quently, we apply matterwave magnification techniques,111

to image either the momenta [24] or the positions [25] of112

the atoms at tint. For the longest interacting expansion113

time (tint = 9ms), the system has expanded enough for114

the atoms to be resolvable without matterwave magnifi-115

cation.116

We make use of a fluorescence imaging scheme to ob-117

tain single atom and spin resolved images [26]. Each im-118

age represents a projection of the wave function on N+N119

positions or momenta. We obtain the 2D density from120

approximately 1000 images for each setting (see Meth-121

ods). To quantify the widths of the 2D densities, we122

calculate the root mean square (rms) � of the momenta123

k and positions r over all atoms and images.124

Observing elliptic flow125

We investigate the evolution of the 2D density profiles126

in real and momentum space for a system of 5+ 5 atoms127

and initial interaction parameter ln(k0Fa2D) = 1.15. The128

obtained density profiles, superimposed with a randomly129

chosen single image of both spin states (black and white130

elliptic flow of 5+5 strongly interacting fermionic atoms released from
anisotropic trap
qualitative agreement with ideal fluid dynamics
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Quantum corrections at second order in derivatives
[Heyen, Giacalone, Floerchinger, 2408.06104] 15

FIG. 3. Comparison of the predicted density profiles of a two-dimensional fluid in a harmonic trap for a Thomas-Fermi type
solution (left column) and the cases � = 1 (center column) and � = 1.5 (right column) for the e↵ective action ansatz presented in
section III. The first row shows the predictions for a single particle, the second for ten particles, and the third for 200 particles.
The equation of state and trap frequencies are taken to be polytropic pressure with  = 2.335, g = 7.06 u1�µm�3�1ms�2;
!x = 1.280 · 2⇡ kHz and !y = 3.384 · 2⇡ kHz, the same as in ref. [15].

such that the integrated momentum flux,

Pjk(t) =
X

i

Z
d
D
p

⇢
pjpk

m

dNi

dDp

�
, (89)

becomes the second moment of the momentum distribu-
tion which can be determined experimentally.

Consider first the case of ideal fluid dynamics, where

Pjk(t) =

Z
d
D
x {⇢(t,x)vj(t,x)vk(t,x) + P (t,x)�jk} .

(90)
The integral can be easily determined for given fluid fields
and equation of state. One should be cautious here, be-
cause the translation to momentum space through the
phase space distribution function works only for non-
interacting particles. Experimentally one can change the

interaction strength very quickly. What can happen dur-
ing this transition? As a consequence of the conservation
laws for particle number and momentum, the time deriva-
tives of ⇢(t,x) and ⇢(t,x)vj(t,x) must remain regular
as functions of time. However, the pressure P (t,x) can
change during the quick ramp in interaction strength. In
the simplest scenario it would change from the pressure
associated to ⇢(t,x) in the interacting equation of state
to the one associated with the same density ⇢(t,x) for a
non-interacting equation of state. However, the ramp in
interacting strength is a non-equilibrium process, and it
is likely that a bulk viscous pressure is created, as well.

To avoid assumptions about the dynamics of the pres-
sure term during the ramp one could study instead of Pjk

nonrelativistic superfluid with bulk pressure and shear stress

πbulk =λ
~2

8mns

[
ns∇2ns + (∇ns)

2
]

πjk =λ
~2

4mns

[
(∂jns)(∂kns)−

1
2
δjk(∇ns)

2
]
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Fluid equations of motion for charm

net heavy quark number current Nµ
− = Nµ

Q − Nµ

Q̄ conserved in QCD
averaged quark number current Nµ

+ = (Nµ
Q + Nµ

Q̄)/2 approximately
conserved for small temperatures T � mQ

decompose
Nµ = Nµ

+ = nuµ + νµ

conservation law

∇µNµ = uµ∂µn + n∇µuµ +∇µν
µ = 0

constitutive relation for diffusion current

τn∆
ρ
σuλ∇λν

σ + νρ + κn∆
ρσ∂σ

( µ
T

)
= 0

chemical potential µ conjugate to heavy quark number
heavy quark diffusion coefficient κn = Dsn
relaxation time τn
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Thermodynamic equation of state for charm

fluid dynamics needs a thermodynamic equation of state
we use a hadron resonance model approximation with sum over all
measured charmed states

n(T , µ) = T
2π2

∑
i∈HRGc

qiM 2
i exp

(qiµ

T

)
K2

(
Mi

T

)

lattice results would be nice to have
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Constraints on charm quark diffusion on the lattice

strong coupling calculations [22] show that the spectral
function is a smooth monotonically rising function
of ω. Based on this, as well as the above considerations,
we use the following two forms of the spectral function
in our analysis that also have been used already in
quenched QCD [18,23]: ρmax ¼ maxðρIRðω; TÞ; ρUVðωÞÞ
and ρsmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2IRðω; TÞ þ ρ2UVðωÞ

p
, which we refer to as

the maximum (max) and the smooth maximum (smax)
Ansätze, respectively. The latter is consistent with the
perturbative NLO calculation [20] and OPE considerations
[46] when it comes to the leading thermal correction at
ω ≫ T. We also consider a third Ansatz for the spectral
function, that is given by ρIRðω; TÞ up to ω ¼ ωIR, and by
ρUV for ω > ωUV, and for ωIR < ω < ωUV we interpolate
with a power-law form ρðω; TÞ ¼ cωp. The parameters c
and p are chosen such that the spectral function is
continuous at ω ¼ ωIR and ωUV. This form of the
spectral function has been used in Ref. [18]. Based on
theoretical results we choose ωIR ¼ T and ωUV ¼ 2πT, see
Supplemental Material [14].
Using the above three Ansätze for the spectral functions

and the spectral representation of the chromoelectric
correlator we fitted the continuum- and flow-time-extrapo-
lated results treating κ and K as fit parameters and thus
estimated the heavy quark diffusion coefficient. It turns out
that the maximum Ansatz gives the largest value of κ, while
the power-law form gives the smallest value. Using the LO
or NLO form of ρUV does not lead to significant change in
the value of κ, meaning that the estimated values of κ are
not too sensitive to the modeling of the high energy part of
the spectral function.
Each model is fitted onto the same 1000 bootstrap

samples of the double-extrapolated correlator data. We
collect all results from all models in a single “distribution”
for the fit parameter κ=T3. We determine a confidence
interval by considering the median of this distribution, and
then adding or subtracting the 34th percentiles on each side,
which gives the lower and upper bounds of the interval. For
better readability we quote the central value of the interval
with the distance to the bounds as the uncertainty. We
obtain κðT¼195MeVÞ¼11.0ð2.5ÞT3, κðT¼220MeVÞ¼
8.4ð2.4ÞT3, κðT ¼ 251 MeVÞ ¼ 6.9ð2.2ÞT3, and
κðT ¼ 293 MeVÞ ¼ 5.8ð2.0ÞT3.
As already noted above, the shape of the correlation

function for τT > 0.25 does not seem to be significantly
changed by the continuum and flow-time-to-zero extrap-
olations. Therefore, we also performed the above analysis
using the nonzero lattice spacing data at 1=a ¼ 7.036 GeV
and nonzero relative flow times

ffiffiffiffiffiffiffi
8τF

p
=τ ¼ 0.3. We find

that the estimated values of κ agree with the ones obtained
from the continuum- and flow-time-extrapolated data
within errors. This is due to the fact that the systematic
uncertainties associated with modeling of the spectral
function are much larger than the effect of the continuum
and zero-flow-time extrapolation. For this reason we also

estimate the heavy quark diffusion coefficient at nonzero
lattice spacing and flow time for the highest temperature
resulting in κðT ¼ 356 MeVÞ=T3 ¼ 4.8ð1.7Þ.
Conclusion.—We carried out first lattice QCD calcula-

tions of the heavy quark diffusion constant in 2þ 1 flavor
QCD at leading order in the inverse heavy quark mass
and in the phenomenologically relevant region of
195 MeV < T < 352 MeV. Our results for Ds as function
of T=Tc are summarized in Fig. 3. Here we use Tc ¼
180 MeV because the calculations are performed at
mπ ≃ 320 MeV, see Supplemental Material [14]. Our
results are smaller than the quenched lattice QCD results
[18,24]. At the lowest temperature our result agrees, within
errors, with the strong coupling expectations from
AdS=CFT [6,47]. At the highest temperature our result
Ds is compatible with the NLO perturbative prediction [5]
within the uncertainties. In comparisons to some phenom-
enological determinations, namely, the Bayesian analysis
[48] of heavy-ion collision data, and the ALICE
Collaboration’s model fits to their data [49], the lattice
QCD results forDs are systematically smaller. On the other
hand, the T-matrix approach on Ds [50,51] seems to agree
with the lattice results.
The present study can be extended in two different ways.

Based on the previous lattice QCD studies of QCD
equation of state [13], quark number susceptibilities
[25,52], and static quark free energies [53] with light quark
mass ml ¼ ms=5 compared to those with nearly physical
light quark mass ml ≃ms=20, we expect the effect larger

FIG. 3. The spatial heavy quark diffusion coefficient in units of
2πT from our lattice calculations compared to the AdS=CFT
estimate [6], NLO perturbative calculation [5], and the quenched
lattice QCD calculations [16,18,24]. For the quenched lattice data
we show the result of Ref. [18] for T ¼ 1.1Tc, the result of
Ref. [16] for T ¼ 1.5Tc, and the results of Ref. [24] for the
remaining temperatures. For the NLO calculations we used two
values of the renormalization scale, μ ¼ 2πT (lower dashed line)
and μ ¼ 4πT (upper dashed line). Also shown are the phenom-
enological estimates [48–51], see main text.

PHYSICAL REVIEW LETTERS 130, 231902 (2023)

231902-4

latest lattice results for heavy quark diffusion coefficient for Nf = 2 + 1
flavor QCD indicate small Ds [HotQCD, PRL 130, 231902 (2023)]

supports fast hydrodynamization of heavy quarks
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Yields of charmed hadrons
[Capellino, Dubla, Floerchinger, Grossi, Kirchner, Masciocchi, PRD 108, 116011 (2023)]
[related work by Andronic, Braun-Munzinger, Redlich, Stachel et al.]

heavy-quark distribution remain large throughout the evo-
lution of the plasma. However, the magnitude of the
diffusion current strongly depends on the spatial diffusion
coefficient and its correspondent relaxation time. LQCD
computations [14] favor a fast hydrodynamization of charm
quarks and, thus, a reduction of the out-of-equilibrium
correction. Around freeze-out we decompose the single-
particle distribution functions, fi ¼ fi;eq þ δfi, where the
equilibrium part fi;eq is given by the ideal gas distribution
and δfi represents the out-of-equilibrium correction. In
general, the δfi correction receives a contribution from
all the dissipative stresses Π, πμν and νμ, such that
δfi ¼ δfi;bulk þ δfi;shear þ δfi;diffusion. In our case, the
open-charm hadrons distribution function includes both
light and heavy components. To properly describe it, one
should derive its expression in a multispecies fluid setup.
As for now, we neglect out-of-equilibrium corrections to
the fluid variables at the freeze-out surface. In the future,
we will address the inclusion of nonlinear terms in the
evolution equation for the dissipation current and the
derivation of a more consistent expression of the total
distribution function.

VI. INTEGRATED YIELDS

The charmed-hadron production is assumed to occur on
a freeze-out hypersurface at a constant temperature. This
chosen temperature is Tfo ¼ 156.5 MeV [13,26]. The
freeze-out hypersurface in the plane of Bjorken time τ
and radius r is parametrized by a parameter γ ∈ ð0; 1Þ.
According to the Cooper-Frye prescription, a sudden
decoupling is assumed at the freeze-out temperature, and
the thermal momentum distribution of the particles is
computed according to

dNhc

pTdϕdpTdy
¼

ghc
ð2πÞ3

Z

Σfo

dγdϕdyτðγÞrðγÞ

× eqα
!
∂r
∂γ

mTK1

"
mT

ur

T

#
I0

"
pT

ur

T

#

−
∂τ
∂γ

K0

"
mT

ur

T

#
I1

"
pT

ur

T

#$
; ð17Þ

where ghc accounts for the degeneracy of the produced
charmed hadron and q accounts for the charm content of
the hadron. The total integrated yield dNhc=dy per unit
rapidity for charmed and anticharmed hadrons is measured
by integrating Eq. (17). The feed-down from resonance
decays is calculated using the FastReso package [22]. The list
of resonances is taken from the PDG [27]. In Fig. 2, the
comparison between the obtained integrated yields and
experimental measurements [28–31] is shown for the
0–10% centrality interval. The yields and the pT spectra
correspond to the sum of particle and antiparticle divided
by two, as reported by experiments. The pT integration

range is from 0 to 10 GeV=c. These results are computed
for Ds ¼ 0 since the integrated yield should not depend on
the spatial diffusion coefficient. However, since out-of-
equilibrium corrections to the single-particle distribution
function at freeze-out are neglected, there can be a
nonphysical dependence of the yields on Ds. While the
relative abundance of each charmed-hadron species
depends mainly on the mass of the hadron, the absolute
value of the integrated yields strongly depends on the EOS
for the charm density as a function of T and α. The HRGc
as EOS is the most suitable choice to estimate the thermal
production of the hadrons and resonances included in the
HRGc. The role played by the resonance decays is then to
reshuffle the relative abundance of the hadrons while
keeping the total number of charm quarks fixed. The
agreement between the model and the measurements is
quantified in the lower panel of Fig. 2. We observed that the
mesons are compatible with the experimental uncertainties,
computed as the sum in quadrature of the statistical and
systematic uncertainties. A deviation of 2.4σ is observed
for the Λþ

c baryons. This deviation might be caused by
missing higher resonance states in the PDG [13,32,33].
Due to the resonances decay, the yield of the D0 increases
by a factor 4.3, while the one of the Λþ

c of a factor 5.
Another factor 2.3 would be needed to reproduce the
experimentally measured yield. Estimates for the yields
of the Ξþ

c and Ω0
c , whose experimental measurements are

not yet available, are provided. Most likely, these values
will underestimate the actual yields due to the lack of
knowledge of higher-resonance states. In other phenom-
enological models, the charmed-baryon enhancement is

FIG. 2. Charmed-hadron integrated yields with and without
feed-down contributions from resonance decays and comparison
with experimental data from the ALICE Collaboration.

F. CAPELLINO et al. PHYS. REV. D 108, 116011 (2023)

116011-4

resonance decays from FastReso sizeable
yield of Λ+

c underpredicted, possibly missing higher resonances in PDG list?
prediction for Ξ+

c and Ω0
c
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Transverse momentum spectra of charmed hadrons
[Capellino, Dubla, Floerchinger, Grossi, Kirchner, Masciocchi, PRD 108, 116011 (2023)]

attributed to a recombination process between the heavy
quark and light thermal partons [34–37].

VII. MOMENTUM DISTRIBUTIONS

In Fig. 3, the pT-differential spectra for the same hadron
species are reported and compared with the experimental
measurements [28–31]. A ratio plot with the data to model
comparison can be found in Appendix D. The bands
correspond to a spread of the input value of the spatial
diffusion coefficient Ds going from a nondiffusive case
(Ds ¼ 0) to a temperature-dependent 2πDsT [14]. The
fluid-dynamic description seems to capture the physics of
Dmesons up to pT ∼ 4–5 GeV=c. This implies that, even if
the charm does not move collectively with the rest of the
fluid in the early stage of the evolution, it relaxes to the
same radial flow of the QGP before the freeze-out occurs.
As observed for the integrated yield, the Λþ

c calculation
underestimates the experimental measurement. The J=ψ pT
distribution describes the experimental measurements for
pT < 3 GeV=c, while it overpredicts the yield for higher
pT. This discrepancy for pT > 3 GeV=c might be attrib-
uted to the dominant contribution from primordial J=ψ ,

which is not accounted for in our model since it is not
expected to reach thermal equilibrium [38–40], but ismainly
sensitive to path-length-dependent effects, like survival
probability and energy loss. It is also important to note that
the experimental measurements consist of J=ψ directly
produced in the collisions plus the contribution from beauty
hadron decays. Including the out-of-equilibrium corrections
in themodel at the freeze-out surfacewill influence the shape
of the momentum distributions. They would modify the
spectra at intermediate/high pT. When adequately included,
we do not expect such a strong dependence on Ds in the
spectra but rather only a tilt in themomentumdistribution. A
further remark regards the dependence of the final momen-
tumdistribution on the initial conditions for the charm fields.
In particular, a broader initial distribution for the charm
density results in a larger average pT at freeze-out. A more
thorough study of the charm initial conditions will improve
the description of the transverse momentum distribution of
the charm hadrons, without of course impacting the results
for the integrated yields.

VIII. CONCLUSIONS

A fluid-dynamic description of the charm quark is
developed for the first time, unveiling that low-pT charm
quarks undergo a very fast hydrodynamization in the QGP
created during ultrarelativistic heavy-ion collisions. The
developed model describes the charmed-hadron yield and
the pT-differential distribution up to pT ∼ 4–5 GeV=c. The
calculations are carried out for a nondiffusive case and
a temperature-dependent Ds. The derivation of out-of-
equilibrium corrections in a multispecies setup will be
addressed. Additional constraints on the spatial diffusion
coefficient will be set in future works via a Bayesian
analysis using both pT-differential spectra and anisotropic
flow coefficients. In addition, this study paves the way for a
fluid-dynamic description of the beauty quark, which,
despite its larger mass, might still reach a partial local
equilibrium allowing further constraining QGP parameters
using heavy quarks as probes.
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APPENDIX A: FLUID-DYNAMIC EQUATIONS

The equations are solved effectively in 1þ 1 dimensions
with Bjorken coordinates ðr; τÞ supplemented by azimuthal
angle ϕ and rapidity η. The metric tensor is defined as

FIG. 3. Results for the momentum distributions of D0, Dþ,
D%þ, Dþ

s , Λþ
c , and J=ψ are shown in comparison with exper-

imental measurements from the ALICE Collaboration [28–31].
Predictions for Ξ0

c and Ω0
c baryon states, which have not been

measured yet, are also shown.

FLUID DYNAMICS OF CHARM QUARKS IN THE QUARK-GLUON … PHYS. REV. D 108, 116011 (2023)

116011-5

good agreement for D-mesons up to pT ≈ 4 − 5 GeV
some deviations for J/Ψ (dissipative correction at freezeout?)
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Photon and dilepton production rate in local thermal equilibrium

photon production rate per unit volume and momentum

p0 dR
d3p =

1
(2π)3 nB(ω)ρ(ω)

frequency in the fluid rest frame ω = −uµpµ

Bose-Einstein factor
nB(ω) =

1
eω/T − 1

electromagnetic spectral function ρ(ω)
similar for dileptons
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Electromagnetic spectral function
[S. Floerchinger, C. Gebhardt, K. Reygers, PLB 837 (2023) 137647]
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fluid dynamics for electric current yields spectral function at small
frequencies and momenta

ρ(ω, p) = σω(ω2 − p2)

(τω2 − Dp2)2 + ω2 + 2 σω

τ2ω2 + 1

electric conductivity σ
diffusion coefficient D = σ/χ

charge susceptibility χ = (∂n/∂µ)|T
relaxation time τ constrained by causality τ > D = σ/χ
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Dielectron transverse momentum and mass spectra

[S. Floerchinger, C. Gebhardt, K. Reygers, PLB 837 (2023) 137647]
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integration over fireball volume at LHC energies
background contribution from resonance decays dominates
Hanbury Brown-Twiss correlations could help
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Conclusions

fluid dynamics approximately describes quantum fields out-of-equilibrium
based on thermodynamic and transport properties of QCD
can explain many aspects of high-energy heavy ion collisions
seems applicable even for relatively small systems
finds applications also for heavy quarks
photon and dilepton spectra in the soft regime
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Expansion with second order corrections

16

FIG. 4. Expansion dynamics for a fluid released from equilibrium in a harmonic trap following ideal fluid dynamics (blue), the
e↵ective action ansatz of Sec. III E with � = 1, and with � = 1.5. Solid curves show the widths

p
hx2i in x-direction, dashed

curves the widths in y-direction. For the ideal fluid curves we solve eqs. (82) with a fourth order accurate Rosenbrock method
(Rodas4 solver in the Julia module Di↵erentialEquations). The other two curves were obtained using the Split-Step Fourier
method with the Hamiltonian (38).

the trace-less tensor

P̂jk(t) = Pjk(t)� �jk
1

D

DX

l=1

Pll(t). (91)

Based on eq. (87) and the decomposition in eq. (3) one
finds

P̂jk(t) =

Z
d
D
x

⇢
⇢(t,x)

h
vj(t,x)vk(t,x)

��jk
1

D
v(t,x)2

i
+ ⇡jk(t,x)

�
.

(92)

Isotropic pressure and bulk viscous pressure terms have
now been subtracted.
The first two terms on the right hand side of (92) are

robust because they only depend on conserved densities
⇢(t,x) and ⇢(t,x)vj(t,x) that cannot change abruptly
during a ramp in interaction strength. Based on this,
ideal hydrodynamic predictions for the temporal evolu-
tion of the momentum anisotropy of the system, hp2xi �
hp

2
yi are shown in ref. [15], which turn out to be in overall

good agreement with the experimental data.
What happens, then, to the second-order terms dis-

cussed here? Beyond the ideal fluid description, the sym-
metric and traceless shear stress tensor ⇡jk(t,x) appears,
and second-order corrections to this term were found in
eq. (42). It is likely that the shear stress terms (like the
ones in eq. (42)) get modified by the ramp in interaction
strength because they are not protected by conservation

laws. Specifically, a ramp to zero interaction strength
should destroy superfluidity and when the superfluid den-
sity n is taken to zero, the shear stress terms in eq. (42)
vanish. At least, this would preserve agreement with the
experimental findings of ref. [15] that there is no momen-
tum anisotropy at the initial time, right after the trap has
been switched o↵.
In summary, without a more detailed understanding

of the non-equilibrium processes happening during the
short time interval in which the interaction strength is
changed, it seems di�cult to make robust statements
about the impact of the second-order corrections on the
integrated momentum flux, and consequently on the mo-
mentum anisotropy built up during the expansion, from
fluid dynamic considerations alone.

V. CONCLUSION

We have discussed non-relativistic fluid dynamics at
second order in the derivative expansion. For superfluids
at zero temperature, we have emphasized contributions
to the momentum flux density or stress tensor that in-
volve second derivatives of the superfluid density. A well-
known example is the quantum pressure contribution to
the Gross-Pitaevskii description of bosons with weak re-
pulsive contact interactions. We have argued that this
represents a specific case of second-order contribution in
a generic treatment based on an e↵ective action ansatz.
More specifically, the term of the form Y (ns)rnsrns



Fluid dynamics with several conserved quantum numbers
fluid with conserved quantum number densities cm = (ε,nB,nC,nS, . . .)

equation of state in grand canonical ensemble in terms of Massieu
potential w(β, αj) = βp(β, αj) with β = 1/T , αj = µj/T ,

dw = −εdβ + njdαj

second derivative yields a matrix of susceptibilities with
γm = (β, α1, α2, . . .)

Gmn(γ) =
∂2w

∂γm∂γn

fluid evolution equations from conservation laws

uµ∂µcm + fm = 0

can be written with inverse susceptibility matrix as

uµ∂µγ
n + (G−1(γ))nmfm = 0



Fluid dynamics for heavy quarks from Fokker-Planck equation

phase-space distribution function f (t, x, p)
currents are moments with respect to momenta

Nµ(t, x) =
∫

d3p
(2π)3p0 pµf (t, x, p)

Boltzmann equation for time evolution

pµ ∂

∂xµ
f (t, x, p) = C [f ]

heavy quarks get small “momentum kicks” from light partons
Fokker-Planck approximation to collision kernel

C [f ] = k0 ∂

∂pj

[
Ajf +

∂

∂pk

[
Bjkf

]]

fluid dynamics from taking moments of the Fokker-Planck equation
approximations justified for slow dynamics



Initial conditions for charm current

[Capellino, Dubla, Floerchinger, Grossi, Kirchner, Masciocchi, PRD 108, 116011 (2023)]

initial density distribution from hard scattering

n(τ0, r) =
1
τ0

ncoll(r)
1
σin

pp

dσQQ̄

dy

σin
pp = 67.6 mb, dσQQ̄

dy = 0.463 mb [Cacciari, Frixone, Nason, JHEP03(2001)006]

diffusion current initially assumed to vanish

νµ(τ0, r) = 0

leads to parameter-free model for initial charm density and current



Evolution of charm density and diffusion current
[Capellino, Dubla, Floerchinger, Grossi, Kirchner, Masciocchi, PRD 108, 116011 (2023)]

In the above expression, the QQ̄ rapidity distribution in
nucleus-nucleus collisions is set by the pQCD QQ̄ cross
section

dNQQ̄

dy
¼ hNcolli

1

σin
dσQQ̄

dy
; ð12Þ

where σin is the inelastic proton-proton cross section and
σQQ̄ is the hard production cross section. The average
number of collisions Ncoll is computed with a Glauber
model and depends on the impact parameter of the
collision, providing:

nQQ̄
hardðτ0; x⃗⊥; y ¼ 0Þ ¼ 1

τ0
ncollðx⃗⊥Þ

1

σin
dσQQ̄

dy
; ð13Þ

where ncoll is assumed to be distributed according to the
fluid-energy density ncoll ∝ T4. As a future development,
one could evaluate the radial distribution of binary colli-
sions directly from TRENTo, not to neglect space-momen-
tum correlations that are important for flow observables.
The integral of the density in the transverse plane provides
the total number of heavy quarks to be conserved through-
out the QGP evolution. As discussed in [15], we remark
that the current associated with the number of heavy quark-
antiquark pairs is accidentally conserved. The heavy-quark
mass is too large for them to be produced thermally
throughout the QGP evolution; moreover, the annihilation
rate of a QQ̄ pair is negligible within the lifetime of the
plasma.
To fix at each point the initial value for α for theQQ̄ pair,

nðT; αÞ ¼ nQQ̄
hard: ð14Þ

Taking the central prediction by FONLL [25] for collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, one gets, at y ¼ 0, dσQQ̄=dy ¼
0.463 mb, with σin ¼ 67.6 mb [20]. At the beginning of
the system evolution, the thermal distribution at zero
chemical potential overshoots the density of charm quarks
in the middle of the fireball. Therefore, α assumes negative
values initially to match the hard production. This is not
expected to happen at the fireball evolution’s end, where
the charm species’ thermal abundance will be strongly
suppressed. The total multiplicity of QQ̄ pairs per unit of
rapidity is given by the integrated density profile, e.g. at
τ ¼ τ0,

NQQ̄ ¼ τ02π
Z

drrnQQ̄
hard: ð15Þ

In terms of fluid variables, due to the conservation of the
charm current, the conserved charge is rewritten as

NQQ̄ ¼
Z

d3x
ffiffiffiffiffi
jgj

p
N0ðx⃗Þ ¼ 2πτ

Z
rðnuτ þ ντÞdr; ð16Þ

where jgj is the determinant of the metric. Besides the
density, we can initialize the heavy-quark diffusion current.
The assumed symmetries would allow a nonvanishing
radial component, but we set it to zero in the absence of
a more detailed initial state model.

V. EVOLUTION OF THE FIELDS

The initial conditions for the fields are set on a hyper-
surface at constant proper time τ0 ¼ 0.4 fm. In Fig. 1
(upper panel), the time evolution of the charm density times
the longitudinal proper time as a function of the radial
coordinate is reported for different values of τ. This is
shown for a nondiffusive (Ds ¼ 0) and temperature-de-
pendent Ds case obtained by linearly fitting results from
LQCD calculations [14]. As expected, the density becomes
more diluted when the temperature decreases. In the
diffusive case, the density evolution is concurrent with
developing the radial component of the diffusion current
(Fig. 1, lower panel). Its values are always negative, thus
negatively contributing to the conserved current Nμ. This
results in a higher density n in the diffusive case, as shown
in Fig. 1. Comparing it to the equilibrium composition of
the heavy-quark density n, one finds that the condition of
jνrj ≪ n is not satisfied in the entire radial region. This
indicates that the out-of-equilibrium components of the

FIG. 1. Charm density times the longitudinal proper time
(upper panel) and diffusion current (lower panel) as a function
of radius for different times. Solid lines correspond to an ideal
hydrodynamic evolution, with Ds ¼ 0. Dashed lines correspond
to a diffusive hydrodynamic evolution, with 2πDsT taken from
LQCD [14].

FLUID DYNAMICS OF CHARM QUARKS IN THE QUARK-GLUON … PHYS. REV. D 108, 116011 (2023)

116011-3

charm density expands and dilutes like energy density
diffusion leads to further dilution



Applicability of fluid description
[Capellino, Beraudo, Dubla, Floerchinger, Masciocchi, Pawlowski, Selyuzhenkov, PRD 106, 034021 (2022)]

Fokker-Planck equation yields relation for relaxation time τn in terms of
diffusion coefficient Ds

fluid dynamics applicable when the relaxation time is small compared to
the dynamics
for initial Bjorken expansion

τn < 1/(∇µuµ) = τ
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Figure 1: Relaxation time of charm quarks (left panel) and beauty quarks (right panel) as a function of
proper time in comparison with the typical expansion time of the fluid under the assumption of Bjorken flow.
Different colored bands correspond to different values of the spatial diffusion coefficient ⇡B .

fields () , D`, ⇧, c`a) to be solved on-shell. This is equal to neglecting the back-reaction of the
charm variables on the other fluid fields. The initial conditions for the temperature fields are taken
using TRENTo [15] to estimate the initial entropy density deposition in Pb-Pb collisions at 5.02
TeV in the 0-10% centrality class. The initial distribution of charm quarks is taken to be scaling
with the number of binary collisions distributed uniformly within a radius of 7 fm. The momentum
distributions are obtained employing a Cooper-Frye prescription at a freeze-out temperature of
156.5 MeV [10]. The resonance decays contributions are computed with the FastReso algorithm
[11]. The out-of-equilibrium corrections on the freeze-out surface are here not included, since they
should be consistently derived for a multi-species fluid.
In Fig. 2 our calculations for the spectra of ⇡0,⇡+,⇡+

B ,⇤+
2 and �/ are shown in comparison

with experimental measurements from the ALICE Collaboration [6, 12–14]. The colored bands
correspond to a spread of the input value of the spatial diffusion coefficient ⇡B going from a non-
diffusive case (⇡B = 0) to the upper limit of the Lattice-QCD calculations (2c⇡B) = 1.5). The
fluid-dynamic description seems to capture the physics of ⇡ mesons up to ?) ⇠ 4�5 GeV. For what
regards the ⇤+

2, an overall underestimation of the integrated yield is observed, possibly indicating
the existence of not-yet-measured resonance states. The �/ momentum distribution, on the other
hand, shows a peak for higher ?) values with respect to the measured one.

4. Conclusions and outlook

This work has shown that a fluid-dynamic description for charm quarks is feasible. Remarkably,
the momentum distributions of various charmed hadrons are found to be in agreement with the
experimental data in a transverse momentum range up to 4 � 5 GeV. Moreover, a consistent way
of including the out-of-equilibrium correction at the freeze-out surface has to be included, as well
as possible relevant non-linear contributions in the equations of motion of the dissipative currents.
Eventually, to validate the hypothesis of (full) charm thermalization, flow coefficients will be
computed and systematically studied against experimental measurements in a continuation of this
work.
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with the number of binary collisions distributed uniformly within a radius of 7 fm. The momentum
distributions are obtained employing a Cooper-Frye prescription at a freeze-out temperature of
156.5 MeV [10]. The resonance decays contributions are computed with the FastReso algorithm
[11]. The out-of-equilibrium corrections on the freeze-out surface are here not included, since they
should be consistently derived for a multi-species fluid.
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fluid-dynamic description seems to capture the physics of ⇡ mesons up to ?) ⇠ 4�5 GeV. For what
regards the ⇤+

2, an overall underestimation of the integrated yield is observed, possibly indicating
the existence of not-yet-measured resonance states. The �/ momentum distribution, on the other
hand, shows a peak for higher ?) values with respect to the measured one.

4. Conclusions and outlook

This work has shown that a fluid-dynamic description for charm quarks is feasible. Remarkably,
the momentum distributions of various charmed hadrons are found to be in agreement with the
experimental data in a transverse momentum range up to 4 � 5 GeV. Moreover, a consistent way
of including the out-of-equilibrium correction at the freeze-out surface has to be included, as well
as possible relevant non-linear contributions in the equations of motion of the dissipative currents.
Eventually, to validate the hypothesis of (full) charm thermalization, flow coefficients will be
computed and systematically studied against experimental measurements in a continuation of this
work.
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Production rate for thermal dileptons

thermal dilepton (e+e−) production rate per unit volume and time

dR
d4p =

α

12π4
1

M 2 nB(ω) ρ(ω,M)

(
1 +

2m2

M 2

)√
1 − 4m2

M 2 Θ(M 2 − 4m2)

momentum of the dilepton pair pµ = pµ
1 + pµ

2

invariant mass defined by p2 + M 2 = 0
lepton mass m
electromagnetic fine structure constant α = e2/(4π)


