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Introduction: superconductivity in metals
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BCS theory and Cooper pairs
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Some experimental evidence of nuclear superfluidity
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But, metals and nuclei are quite different, aren’t they?

metals nuclei
questions still arise

• Can we observe Cooper pairs in nuclei?
• How do we make a quantitative 

assessment of pair correlations in 
nuclei? 

• How do we export our knowledge of 
nuclear superfluidity to nuclear 
matter? 
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But, metals and nuclei are quite different, aren’t they?

metals nuclei

(t,p) reactions are a specific probe 
of nuclear pairing correlations

questions still arise

• Can we observe Cooper pairs in nuclei?
• How do we make a quantitative 

assessment of pair correlations in 
nuclei? 

• How do we export our knowledge of 
nuclear superfluidity to nuclear 
matter? 
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But, metals and nuclei are quite different, aren’t they?

metals nuclei

Rep. Prog. Phys. 76 (2013) 106301
GP, Idini, Barranco, Vigezzi, Broglia
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The 2 neutron transfer process is very delocalized
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The 2 neutron transfer process is very delocalized
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Computing 112Sn(p,t)110Sn in second order DWBA
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Computing 112Sn(p,t)110Sn in second order DWBA

+ + +

=
The (t,p) process is essentially a successive 
transfer of two correlated neutrons
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Computing 112Sn(p,t)110Sn in second order DWBA

+ + +

=
The (t,p) process is essentially a successive 
transfer of two correlated neutrons
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Theory should account for the absolute value of the cross section
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Reaction+Structure theory works well across the nuclear chart 

Sn isotopes (BCS)

Pb ground state and excited 
states (QRPA)

Lithium isotopes (Nuclear Field Theory)
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Looking for something new in the nuclear spectrum: The Giant 
Pairing Vibration (GPV)

Collective pairing mode predicted almost 50 years ago, awaiting experimental confirmation?
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(t,p) is an ideal process to populate the elusive Giant Pairing Vibration

bump in the continuum populated 
by the reaction 12C(18O,16O)14C
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(t,p) is an ideal process to populate the elusive Giant Pairing Vibration
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FIG. 2. (a) Monopolar strength functions in 14C, calculated as dis-
cussed in the text. The strength functions have been averaged by a

Lorentzian with FWHM =1 MeV. The experimental energy −S2n of
14C is indicated by the arrow 0+

1 . The positions of the two lowest ex-

cited 0+ statesobtained from their respectiveexperimental excitation
energies are indicated by the arrows 0+

2 and 0+
3 . (b) The PVC pairing

strength function shown in (a) is displayed in the interval between
E = −10 and E = +10 MeV in the main plot and between E = −18

and E = −3 MeV in the inset. The strength is scaled with di↵erent
colours according to the weight of the di↵erent angular momenta l j

in the norm
P

nn0l j [X(k)2
nl jn0l j

− Y(k)2
nl jn0l j

] of each eigenvector |k >.

MeV), with dominant (d5/ 2)2 and (s1/ 2)2 components, and at

E ⇡ −3.5 MeV (E⇤ ⇡ 9.6 MeV), also mostly of sd charac-

ter. The 2+ admixtures in 0+
2

and 0+
3

are 37% and 33% . In

the recent 12C(18O, 16O)14C transfer experiment, only the 0+
3

state was weakly populated at Elab = 84 MeV, while neither

the 0+
2 nor the 0+

3 state were identified at Elab = 275 MeV [6,

7]. This appears to be in contrast with the present calculation,

that showsarather largestrength for the0+
2 state. On theother

hand, these two excited states have been populated in (t,p)

reactions [28] and the ratios of the measured cross sections

relative to the ground state are in fair agreement with our cal-

culated strength function. Considering now the GPV strength

shifted to higher energy, thePVC produces abump in thecon-

tinuum, which is located in the excitation region E⇤ ⇡ 16-20

MeV, not far from the bump detected in the 12C(18O, 16O)14C

experiment. It is found that several waves contribute to form

this bump besides the sd orbitals. The contribution from the

d3/ 2 component is not particularly significant, in keeping with
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FIG. 3. Spectrum of the [[ pp0]2+ ⌦2+ ]0+ components admixed in

the many-body 0+ states (cf. Eq. (4)). These components result
from thediagonalization of theHamiltonian H2⌫with (solid line) and

without (dash-dotted line) the quadrupole pairing interaction among
the valence neutrons.

thefact that the3/ 2+ statesobserved in 13C areeither of many-

body character or display avery largewidth. At variance with

the lower peak, this bump has a large admixture (about 60%)

with configurations of the type [[ pp0]2+ ⌦2+ ]0+ involving the

2+ surface vibration. The energy distribution of these compo-

nents, denoted by X(k)pp02+ , is shown in Fig. 3, and is com-

puted similarly to Eq. (3):

S
q

k
(Rbox) = |

X

pp0

X(k)pp02+

Z

dr  p(r) p0(r) f (r) < jp||Y2|| jp0 > |2

(4)

These components produce a large bump in the continuum,

which is enhanced by the action of the quadrupole pairing in-

teraction. Its width is much smaller than that exhibited by

the monopolar components shown in Fig. 2, in keeping with

the fact that Sq involves mostly bound or resonant s- and d-

waves coupled to 2+ , because part of the excitation energy

is carried by the 2+ phonon. The nature of this bump points

to the possibility to populate 0+ states in this region by the

combined e↵ect of the inelastic excitation of the 2+ vibration

of the core and the transfer of a pair of neutrons coupled to

2+ . This mechanism, would be complementary to the direct

two-nucleon transfer process associated with the monopole

strength function, and would also be consistent with the very

largecross sections observed for transfer to the2+ state in 14C

[18, 19]. Furthermore, one could argue about the possibility

to detect quadrupole gammatransitions of theorder of 4 MeV

in coincidence with transfer, as a signature of the admixture

of the 2+ vibration.

Conclusions We have formulated an extension of the pp-

RPA equations to describe 0+ states in theA+2 system, which

incorporates polarization e↵ects of the core surface via PVC.

The theory has been applied to the pair response in 14C. The
14C ground state has a pronounced (p1/ 2)2 character, but con-

tains a quadrupole admixture that could be probed by a two-

neutron transfer reaction populating the 2+ vibration of the

monopole strength in 14C

we predict a rather broad 
structure in the continuum
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(t,p) is an ideal process to populate the elusive Giant Pairing Vibration
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E = −10 and E = +10 MeV in the main plot and between E = −18

and E = −3 MeV in the inset. The strength is scaled with di↵erent
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MeV), with dominant (d5/ 2)2 and (s1/ 2)2 components, and at

E ⇡ −3.5 MeV (E⇤ ⇡ 9.6 MeV), also mostly of sd charac-

ter. The 2+ admixtures in 0+
2

and 0+
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are 37% and 33% . In

the recent 12C(18O, 16O)14C transfer experiment, only the 0+
3

state was weakly populated at Elab = 84 MeV, while neither

the 0+
2 nor the 0+

3 state were identified at Elab = 275 MeV [6,

7]. This appears to be in contrast with the present calculation,

that showsarather largestrength for the0+
2 state. On theother

hand, these two excited states have been populated in (t,p)

reactions [28] and the ratios of the measured cross sections

relative to the ground state are in fair agreement with our cal-

culated strength function. Considering now the GPV strength

shifted to higher energy, thePVC produces abump in thecon-

tinuum, which is located in the excitation region E⇤ ⇡ 16-20

MeV, not far from the bump detected in the 12C(18O, 16O)14C

experiment. It is found that several waves contribute to form

this bump besides the sd orbitals. The contribution from the
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the many-body 0+ states (cf. Eq. (4)). These components result
from thediagonalization of theHamiltonian H2⌫with (solid line) and

without (dash-dotted line) the quadrupole pairing interaction among
the valence neutrons.

thefact that the3/ 2+ statesobserved in 13C areeither of many-

body character or display avery largewidth. At variance with

the lower peak, this bump has a large admixture (about 60%)

with configurations of the type [[ pp0]2+ ⌦2+ ]0+ involving the

2+ surface vibration. The energy distribution of these compo-

nents, denoted by X(k)pp02+ , is shown in Fig. 3, and is com-

puted similarly to Eq. (3):

S
q

k
(Rbox) = |

X

pp0

X(k)pp02+

Z

dr  p(r) p0(r) f (r) < jp||Y2|| jp0 > |2

(4)

These components produce a large bump in the continuum,

which is enhanced by the action of the quadrupole pairing in-

teraction. Its width is much smaller than that exhibited by

the monopolar components shown in Fig. 2, in keeping with

the fact that Sq involves mostly bound or resonant s- and d-

waves coupled to 2+ , because part of the excitation energy

is carried by the 2+ phonon. The nature of this bump points

to the possibility to populate 0+ states in this region by the

combined e↵ect of the inelastic excitation of the 2+ vibration

of the core and the transfer of a pair of neutrons coupled to

2+ . This mechanism, would be complementary to the direct

two-nucleon transfer process associated with the monopole

strength function, and would also be consistent with the very

largecross sections observed for transfer to the2+ state in 14C

[18, 19]. Furthermore, one could argue about the possibility

to detect quadrupole gammatransitions of theorder of 4 MeV

in coincidence with transfer, as a signature of the admixture

of the 2+ vibration.

Conclusions We have formulated an extension of the pp-

RPA equations to describe 0+ states in theA+2 system, which

incorporates polarization e↵ects of the core surface via PVC.

The theory has been applied to the pair response in 14C. The
14C ground state has a pronounced (p1/ 2)2 character, but con-

tains a quadrupole admixture that could be probed by a two-

neutron transfer reaction populating the 2+ vibration of the

monopole strength in 14C

we predict a rather broad 
structure in the continuum

working on a theoretical 
estimate of 12C(t,p)14C(GPV) 
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Excited halo state in 12Be (0+
2)

1002 POTEL et al.
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Fig. 6. Pairing vibrations around 9Li and absolute cross sections associated with removal [41] (see also [42]) and addition [40]

modes. The theoretical absolutedifferential cross sections for 11Li(p, t)9Li(g.s.) (addition: a) is reported in [31]. Thetheoretical

absolutedifferential cross section associated with the reaction 7Li(t , p)9Li(g.s.) (removal: r) was carried out making useof the
wavefunction associated with the RPA solution of the pairing Hamiltonian (see [4, 23] and Appendix A as well as Table 1),

adjusting the coupling constant G to reproduce the correlation energy of the two neutron holes in the core of 9Li (i.e. in the

ground stateof 7Li). Theoptical potential parametersused weretaken from [41, 43]. Of noticethat throughout in this paper, in
particular in connection with this figure, wereport absolutedifferential cross sections (see also Table 2).

pairing-vibrational spectrum of 9Li and the associ-
ated absolute two-particle transfer differential cross
sections of the pair addition and pair removal modes,
in comparison with theexperimental data [40, 41].

In the case of the reaction 11Li(p, t)9Li(g.s.) the
absolute differential cross section was calculated

Table 1. RPA wavefunction of the pair- removal mode of
9Li. Single-particle energies were deduced from exper-
imental binding energy differences, while W1(β = 2) =
= 3.36 MeV, W1(β = −2) = 2.3 MeV. The results ob-
tained making use of a single G or of two pairing cou-
pling constants to take care of the difference of overlaps
between core– core, core– halo, and halo– halo single-
particle wavefunctions are, in the present case, essentially
the same(seeAppendix A, in particular Section A.2)

εi , MeV X r εk , MeV Y r

1s1/ 2 −16.07 0.058 1p1/ 2 0.025 0.244

1p3/ 2 −4.06 1.049 2s1/ 2 0.5 0.211

making use of the two- nucleon spectroscopic ampli-
tudes obtained from the |0⟩ term of the neutron com-

ponent of the 11Li ground state (≡|0̃⟩ν ⊗ |p3/ 2(π)⟩,
cf. [33]),

|0̃⟩ν = |0⟩ + α|(p1/ 2, s1/ 2)1− ⊗ 1−; 0⟩ + (8)

+ β|(s1/ 2, d5/ 2)2+ ⊗ 2+ ; 0⟩,

with α = 0.7 and β ≈ 0.1, and

|0⟩ = 0.45|s2
1/ 2(0)⟩ + 0.55|p2

1/ 2(0)⟩ + (9)

+ 0.04|d2
5/ 2(0)⟩,

describing themotion of thetwohaloneutrons around
9Li. Successive, simultaneousand non-orthogonality
contributions to the two-particle- transfer process
were taken into account (see [31, 34, 40] and refer-
ences therein). The optical parameters used to de-

scribe the 11Li + p, 10Li + d, and the9Li + t channels
were taken from [40, 43].

In the case of 7Li(t, p)9Li(g.s.) reaction, the op-
tical parameters were taken from [41, 43] while

ЯДЕРНАЯ ФИЗИКА том77 № 8 2014

Li isotopes

(t,p)

(p,t)

(t,p)

(p,t)

Be isotopes
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pairing-vibrational spectrum of 9Li and the associ-
ated absolute two-particle transfer differential cross
sections of the pair addition and pair removal modes,
in comparison with theexperimental data [40, 41].

In the case of the reaction 11Li(p, t)9Li(g.s.) the
absolute differential cross section was calculated

Table 1. RPA wavefunction of the pair- removal mode of
9Li. Single-particle energies were deduced from exper-
imental binding energy differences, while W1(β = 2) =
= 3.36 MeV, W1(β = −2) = 2.3 MeV. The results ob-
tained making use of a single G or of two pairing cou-
pling constants to take care of the difference of overlaps
between core– core, core– halo, and halo– halo single-
particle wavefunctions are, in the present case, essentially
the same(seeAppendix A, in particular Section A.2)
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1s1/ 2 −16.07 0.058 1p1/ 2 0.025 0.244
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making use of the two- nucleon spectroscopic ampli-
tudes obtained from the |0⟩ term of the neutron com-

ponent of the 11Li ground state (≡|0̃⟩ν ⊗ |p3/ 2(π)⟩,
cf. [33]),

|0̃⟩ν = |0⟩ + α|(p1/ 2, s1/ 2)1− ⊗ 1−; 0⟩ + (8)

+ β|(s1/ 2, d5/ 2)2+ ⊗ 2+ ; 0⟩,

with α = 0.7 and β ≈ 0.1, and

|0⟩ = 0.45|s2
1/ 2(0)⟩ + 0.55|p2

1/ 2(0)⟩ + (9)

+ 0.04|d2
5/ 2(0)⟩,

describing themotion of thetwohaloneutrons around
9Li. Successive, simultaneousand non-orthogonality
contributions to the two-particle- transfer process
were taken into account (see [31, 34, 40] and refer-
ences therein). The optical parameters used to de-

scribe the 11Li + p, 10Li + d, and the9Li + t channels
were taken from [40, 43].

In the case of 7Li(t, p)9Li(g.s.) reaction, the op-
tical parameters were taken from [41, 43] while

ЯДЕРНАЯ ФИЗИКА том77 № 8 2014

Li isotopes

(t,p)

(p,t)

(t,p)

(p,t)

Be isotopes
0+

excited halo state?
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The Pygmy Dipole Resonance (PDR) as a two-quasiparticle mode

• The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a 
two-quasiparticle mode.

• Therefore, PDR in a nucleus A0 can be better probed with two-quasiparticle fields, 
i.e., particle-hole (ph), particle-particle (pp), and hole-hole (hh) fields.

Coulomb, inelastic, and -induced 
excitation on A0:

• A0(d,d’)A0(PDR)
• A0(p,p’) A0(PDR)
• A0(’) A0(PDR)

• A0(’) A0(PDR)
• A0(n,n’) A0(PDR)
• A0(X,X’) A0(PDR)

one-nucleon transfer on A0-1:
• A0-1(d,p) A0(PDR)
Spieker et al., PRL (2020)

proposed 
in this talk

ph
two-nucleon transfer on A0-2:

• A0-2(t,p) A0(PDR)

pp

Weinert et al., PRL (2021)
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The Pygmy Dipole Resonance (PDR) as a two-quasiparticle mode

• The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a 
two-quasiparticle mode.

• Therefore, PDR in a nucleus A0 can be better probed with two-quasiparticle fields, 
i.e., particle-hole (ph), particle-particle (pp), and hole-hole (hh) fields.

complementary classification of dipole modes

isovector              isoscalar

ph                      pp
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The Pygmy Dipole Resonance (PDR) as a two-quasiparticle mode

• The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a 
two-quasiparticle mode.

• Therefore, PDR in a nucleus A0 can be better probed with two-quasiparticle fields, 
i.e., particle-hole (ph), particle-particle (pp), and hole-hole (hh) fields.

complementary classification of dipole modes

isovector              isoscalar

ph                      pp

GDR?                  PDR?
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Probing the 11Li PDR with 2-neutron transfer 

9Li(t,p)11Li(PDR)
Et=15 MeV

dipole response

experiment approved at ISOLDE facility 
(CERN). Spokepersons: Ayyad, Vigezzi
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the 11Li PDR has the structure of an elementary quantum vortex

structure of a multipolar  (1-) Cooper pair: 
elementary quantum vortex 

9Li core

halo neutrons
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the 11Li PDR has the structure of an elementary quantum vortex

structure of a multipolar  (1-) Cooper pair: 
elementary quantum vortex 

9Li core

halo neutrons

velocity field of 208Pb dipole states

Ex=6.5-10.5 MeV Ex>10.5 MeV

Ryezayeva et al. PRL 89 (2002) 272502 

• Is vorticity a signature of PDR?
• Is there an experimental signature 

for it?
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Using the Surrogate Reaction Method (SRM) to infer AX(n,)A+1X from 
AX(d,p)A+1X

E

Sn

O

A

Desired reaction: neutron capture on 
target A 

n
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Using the Surrogate Reaction Method (SRM) to infer AX(n,)A+1X from 
AX(d,p)A+1X

E

Sn

O

A

Desired reaction: neutron capture on 
target A 



33
LLNL-PRES-xxxxxx

Using the Surrogate Reaction Method (SRM) to infer AX(n,)A+1X from 
AX(d,p)A+1X

E

Sn

O

A+1 

Desired reaction: neutron capture on 
target A 
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Using the Surrogate Reaction Method (SRM) to infer AX(n,)A+1X from 
AX(d,p)A+1X

E

Sn

O

A

Surrogate: (d,p) reaction on target 
A 

d
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Using the Surrogate Reaction Method (SRM) to infer AX(n,)A+1X from 
AX(d,p)A+1X

E

Sn

O

A

Surrogate: (d,p) reaction on target 
A 

p
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Using the Surrogate Reaction Method (SRM) to infer AX(n,)A+1X from 
AX(d,p)A+1X

E

Sn

O

A+1

p

Surrogate: (d,p) reaction on target 
A 

• Reaction theory needed to determine spin distribution
• Green’s Function Transfer (GFT) formalism used to 

describe reaction process
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A+1

Desired reaction: neutron capture on 
target A+1 
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A+1

Desired reaction: neutron capture on 
target A+1 
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A+2

Desired reaction: neutron capture on 
target A+1 
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A

Surrogate: (t,p) reaction on target 
A+1 

t
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A

Surrogate: (t,p) reaction on target 
A+1 

p
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A+2

p

Surrogate: (t,p) reaction on target 
A+1 (A. Richards talk) 

Extension of GFT to (t,p) reactions
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Using the SRM to infer A+1X(n,)A+2X from AX(t,p)A+2X

E

Sn

O

A+2

p

Surrogate: (t,p) reaction on target 
A+1 

Extension of GFT to (t,p) reactions

Possible extension to (t,pf)
(talks by Devlin and Bulgac)
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An opportunity to thoroughly benchmark the SRM with 95Mo(n,)
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An opportunity to thoroughly benchmark the SRM with 95Mo(n,)

(t,p) (p,t)

(d,p) (p,d)

(p,p’)
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An opportunity to thoroughly benchmark the SRM with 95Mo(n,)

(t,p) (p,t)

(d,p) (p,d)

(p,p’)
• 94-98Mo are all stable
• 95Mo(n,) is known
•  95Mo(d,p) and 95Mo(p,p’) have been 

measured
• Opportunity to benchmark many SRM 

techniques 



Thank you for your attention!
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Is there a pygmy resonance in 11Li? What’s its structure?

(p,p’)

Coulomb breakup

Nakamura et al. PRL 96, 
252502 (2006)

Fernández et al. PRL 110, 
142701 (2013)

(d,d’)

Kanungo et al. PRL 114, 
192502 (2015) 

• How do we 
characterize the PDR?

• Is it distinct from the 
GDR?

• How does it compare 
with theory? 

some questions to address:
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Structure of 10Li in nuclear field theory (NFT): the precursor of 11Li

1.5

1

-0.5

0.5

0
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p1/2

s1/2

independent particle 
model

p1/2

p3/2

s1/2

s1/2

d5/2

 
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Structure of 10Li in nuclear field theory (NFT): the precursor of 11Li

1.5

1

-0.5

0.5

0

-1

-1.5

p1/2

s1/2

s1/2

RPA quadrupole 
phonon

PVC vertex

attractive self-
energy contribution

(F. Barranco talk yesterday)
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Structure of 10Li in nuclear field theory (NFT): the precursor of 11Li

1.5

1

-0.5

0.5

0

-1

-1.5

p1/2

s1/2

s1/2

p1/2
Pauli-blocking, 
repulsive contribution
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Structure of 10Li in nuclear field theory (NFT): the precursor of 11Li

1.5

1

-0.5

0.5

0

-1

-1.5

p1/2

s1/2

s1/2

p1/2

} parity inversion!
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Structure of 10Li in nuclear field theory (NFT): the precursor of 11Li

1.5

1

-0.5

0.5

0

-1

-1.5

p1/2

s1/2

s1/2

p1/2

theoretical description validated by 
experiment

Cavallaro et al., PRL 118, 012701 (2017)

Barranco, GP, Vigezzi, Broglia PRC 101, 031305(R) (2020)

9Li(d,p)
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6

s1/2

p1/2

we add 1 neutron to 
the s1/2 orbital of 

10Li 
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6

s1/2

p1/2

bare NN interaction 
(Argonne v18)

}
halo neutrons scattered 
among p and s orbitals 
(and a little d, not 
included in the picture)
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6

s1/2

p1/2

bare NN interaction 
(Argonne v18)

}
halo neutrons scattered 
among p and s orbitals 
(and a little d, not 
included in the picture)

pairing correlations induced by short-range, 
bare interaction not enough to bind 11Li
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6 + +
1-(PDR) 

2+ 

s1/2

p1/2

induced interaction from 
coupling to 2+ phonon
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6 + +
1-(PDR) 

2+ 

s1/2

p1/2

2 low-angular momentum 
sates of opposite parity at 
threshold: ideal scenario for 
PDR
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6 + +
1-(PDR) 

2+ 

s1/2

p1/2

half (0.72=0.5) of the ground 
state wavefunction is coupled 
to the PDR

2 low-angular momentum 
sates of opposite parity at 
threshold: ideal scenario for 
PDR
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Nuclear field theory (NFT) highlights the role of the PDR in 11Li 
structure

0.6

0.4

-0.2

0.2

0

-0.4

-0.6 + +
1-(PDR) 

2+ 

s1/2

p1/2

half (0.72=0.5) of the ground 
state wavefunction is coupled 
to the PDR

• the PDR plays a central role in 
providing the glue to bind 11Li

• symbiotic relationship between 
halo and PDR: the halo provides 
the PDR scenario, and the PDR 
holds the halo together

2 low-angular momentum 
sates of opposite parity at 
threshold: ideal scenario for 
PDR
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theory confirmed by 11Li(p,t)9Li(gs;Ex=2.69 MeV 1/2-)

9Li(Ex=2.69 MeV 1/2-)

9Li(gs)

reaction calculation in 2-
order DWBA, dominated by 
successive transfer of the 2 
neutrons (E. Vigezzi talk 
yesterday )

GP, Barranco, Vigezzi, Broglia 
PRL 105 172502 (2010)
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9Li(Ex=2.69 MeV 1/2-)

9Li(gs)

GP, Barranco, Vigezzi, Broglia 
PRL 105 172502 (2010)

theory confirmed by 11Li(p,t)9Li(gs;Ex=2.69 MeV 1/2-)
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9Li(Ex=2.69 MeV 1/2-)

9Li(gs)

GP, Barranco, Vigezzi, Broglia 
PRL 105 172502 (2010)

theory confirmed by 11Li(p,t)9Li(gs;Ex=2.69 MeV 1/2-)
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9Li(Ex=2.69 MeV 1/2-)

9Li(gs)

depletion of pp 
strength due to 
coupling with PDR

GP, Barranco, Vigezzi, Broglia 
PRL 105 172502 (2010)

theory confirmed by 11Li(p,t)9Li(gs;Ex=2.69 MeV 1/2-)
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9Li(Ex=2.69 MeV 1/2-)

9Li(gs)

depletion of pp 
strength due to 
coupling with PDR

theory confirmed by 11Li(p,t)9Li(gs;Ex=2.69 MeV 1/2-)
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The PDR as a two-quasiparticle mode

• The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a 
two-quasiparticle mode.

• Therefore, PDR in a nucleus A0 can be better probed with two-quasiparticle fields, 
i.e., particle-hole (ph), particle-particle (pp), and hole-hole (hh) fields.

Coulomb, inelastic, and -induced 
excitation on A0:

• A0(d,d’)A0(PDR)
• A0(p,p’) A0(PDR)
• A0(’) A0(PDR)

• A0(’) A0(PDR)
• A0(n,n’) A0(PDR)
• A0(X,X’) A0(PDR)

one-nucleon transfer on A0-1:
• A0-1(d,p) A0(PDR)
(Spieker, Weinert, and 
Khumalo talks) proposed 

in this talk(Vandebrouck talk)

ph
two-nucleon transfer on A0-2:

• A0-2(t,p) A0(PDR)

pp
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The PDR as a two-quasiparticle mode

• The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a 
two-quasiparticle mode.

• Therefore, PDR in a nucleus A0 can be better probed with two-quasiparticle fields, 
i.e., particle-hole (ph), particle-particle (pp), and hole-hole (hh) fields.

complementary classification of dipole modes

isovector              isoscalar

ph                      pp
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The PDR as a two-quasiparticle mode

• The PDR is rather well described in the harmonic approximation (RPA, QRPA) as a 
two-quasiparticle mode.

• Therefore, PDR in a nucleus A0 can be better probed with two-quasiparticle fields, 
i.e., particle-hole (ph), particle-particle (pp), and hole-hole (hh) fields.

complementary classification of dipole modes

isovector              isoscalar

ph                      pp

GDR?                  PDR?
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we compute the 11Li PDR structure in RPA

E=0.65 MeV

3 representative low-lying dipole RPA peaks

E=1.21 MeV E=2 MeV
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we compute the 11Li PDR structure in RPA

E=0.65 MeV

3 representative low-lying dipole RPA peaks

E=1.21 MeV E=2 MeV

largest components are
2-quasiparticle neutron 
halo (s1/2 p1/2)1- states  
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the PDR exhausts about 8% of the EWSR

RPA 
unperturbed 

Lorentzian fit to GDR 

Lorentzian fit to PDR 

dipole response function
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the PDR exhausts about 8% of the EWSR

dipole response function transition densities

GDR

PDR
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the PDR exhausts about 8% of the EWSR

dipole response function

experiment approved at FRIB to probe 
the whole dipole response with (p,p’). 
Spokepersons: Ayyad, Zamora
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the PDR has the structure of an elementary quantum vortex

structure of a multipolar  (1-) Cooper pair: 
elementary quantum vortex 

9Li core

halo neutrons

velocity field of 208Pb dipole states

Ex=6.5-10.5 MeV Ex>10.5 MeV

Ryezayeva et al. PRL 89 (2002) 272502 

• Is vorticity a signature of PDR?
• Is there an experimental signature 

for it?
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Probing the 11Li PDR with 2-neutron transfer 

9Li(t,p)11Li(PDR)
Et=15 MeV

dipole response

• we predict the population of the PDR with 
the 2-neutron transfer reaction 
9Li(t,p)11Li(PDR), with cross section =0.3mb

• shape of differential cross section very 
similar to that of the dipole response

• absolute value of cross section is a measure 
of the pp nature of the PDR
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Probing the 11Li PDR with 2-neutron transfer 

9Li(t,p)11Li(PDR)
Et=15 MeV

dipole response

experiment approved at ISOLDE facility 
(CERN). Spokepersons: Ayyad, Vigezzi
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Conclusions

• the PDR plays an important role in the structure of the exotic two-neutron halo nucleus 11Li: halo-
PDR symbiotic nature

• our calculations point to a strong pp component of the PDR, as opposed to the more ph nature of 
the GDR

complementary classification of dipole modes

isovector          isoscalar

ph                pp

GDR?              PDR?

• PDR of 11Li as a vortical excitation of the halo. Extrapolable to neutron skins?
• Approved experiments: 11Li(p,p’)11Li* @ FRIB, and  9Li(t,p)11Li(PDR) @ ISOLDE

• along with (d,p) and (n,n’), (t,p) to join the ranks of novel probes to the PDR
• personal wish: (t,p) measurements on nuclei with neutron skin. Maybe with new  FSU triton 

beam?

talks by Vandebrouck, 
Spieker, Weinert, 
Khumalo
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we compute the 11Li PDR structure and the 9Li (t,p)11Li(PDR) 
cross section

E=0.65 MeV

3 representative low-lying dipole RPA peaks

E=1.21 MeV E=2 MeV
velocity field of 208Pb dipole states

Ex=6.5-10.5 MeV Ex>10.5 MeV

Ryezayeva et al. PRL 89 (2002) 272502 
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Ground state of 11Li
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we compute the 11Li PDR structure and the 9Li (t,p)11Li(PDR) 
cross section
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proposal to measure 9Li(t,p)11Li(PDR) approved at ISOLDE
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the structure of the PDR can be addressed with different probes

Vandebrouck talk

Savran 2018
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Inelastic excitation and two-nucleon transfer populate the same 
states
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Two neutron transfer, a novel probe for the PDR?
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Low-lying dipole strength
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Full dipole strength
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Transition densities
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Deformations in 3D space and in gauge space
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NFT
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11Li summary
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Role of ground state correlations
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Transition to the first 1/2- (2.69 MeV) excited state of 9Li
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From 9Li to  10Li…



96
LLNL-PRES-xxxxxx

… and from 10Li to 11Li...and to 11Li

11Li= 9Li core+ 2–neutron halo (single Cooper pair). According to

Barranco et al. (2001), the two neutrons correlate by means of the bare

interaction (accounting for ⇡ 20% of the 11Li binding energy) and by

exchanging 1− and 2+ phonons (⇡ 80% of the binding energy)

1− 2++ +
⇡

Within this model, the 11Li wavefunction can be written as

|0̃i = 0.45|s2
1/ 2(0)i + 0.55|p2

1/ 2(0)i + 0.04|d2
5/ 2(0) i

+ 0.70|(ps)1− ⌦1− ; 0i + 0.10|(sd)2+ ⌦2+ ; 0i .

Note that the p3/ 2 proton doesn’t play any role and is not taken into

account.

TUNL, July 1st , 2014 slide 22/ 48
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11Li(p,t)9Li(1/2-)

Transfer in drip–line nuclei 1H(11Li,9Li)3H

We will try to draw information about the halo structure of 11Li from the

reactions 1H(11Li,9Li)3H and 1H(11Li,9Li⇤(2.69 MeV))3H (I. Tanihata et

al., Phys. Rev. Lett. 100, 192502 (2008))

Schematic depict ion of 11Li First excited state of 9Li

Saclay, M ay 27t h, 2013 slide 12/ 35
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Spontaneous symmetry breaking in nuclei
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