Precision Measurements of (Net)-Proton Number Fluctuations in Au+Au Collisions at RHIC

Outline

1) Introduction

2) Selected Recent Results

- Collectivity
- Baryon Correlations and Hyper-Nuclei Productions
- Criticality from BES-II (collider)

3) Summary and Outlook

Nuclear Collisions and QCD Phase Diagram

1) RHIC BES: \rightarrow search for 1st-order phase transition and **QCD critical point**; 2) Baryon interactions (*e.g.* N - N, Y - N) \rightarrow inner structure of compact stars

LGT: QCD Phase Structure

1) QCD transition temperature: $(T_{PC} = 156.5 \pm 1.5 \text{ MeV})$ 2) Chiral crossover line $T_{PC}(\mu_B) = T_{PC}^0 \left| 1 - \kappa_2 \left(\frac{\mu_B}{T_{PC}^0} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_{PC}^0} \right)^4 \right|$ $\kappa_2 = 0.012(4), \kappa_4 = 0.00(4)$ 3) Chiral transition temperature: $T_{C} = 132^{+3}_{-6} \text{ MeV}$ 4) QCD critical end point: $T^{CEP} < T_C$, $(\mu_B^{CEP} \gtrsim 3T_C)$ Phys.Lett.**B795**, 15(2019); HotQCD: Phys. Rev. Lett. **123**, 062002(2019)

- Large acceptance

eTOF

MTD

EEMC

- Excellent PID & uniform efficiency

STAR DETECTOR SYSTEM

EMC Mag. TPC iTPC

TOF

EPD

- Modest rates

Major Upgrades for BES-II

iTPC:

- \blacktriangleright Improves dE/dx
- > Extends η coverage from 1.0 to 1.6
- \blacktriangleright Lowers p_T cut-in from 125 to 60 MeV/c
- ➤ Ready in 2019

eTOF:

- Forward rapidity coverage
- > PID at $\eta = 0.9$ to 1.6
- **Borrowed from CBM-FAIR**
- ➤ Ready in 2019

EPD:

- Improves trigger
- Better centrality & event plane measurements
- ➢ Ready in 2018

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- 3) Enhance centrality/event plane resolution

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF group, arXiv: 1609.05102 EPD: J. Adams, et al. NIM <u>A968,</u> 163970 (2020)

STAR Fixed Target Setup

CBM participates in RHIC BES-II in 2019 – 2021:

- > Complementary to CBM program: $\sqrt{s_{NN}} = 3 7.2 \text{ GeV} (750 \ge \mu_B \ge 420 \text{ MeV})$
- Strange-hadron, hyper-nuclei and fluctuation at the high baryon density region

Nu Xu

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC													
		Col	lider Runs			Fixed-Target Runs							
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S _{NN} (GeV)	#Events	μ_B	Y _{beam}	run		
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21		
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21		
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21		
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20		
5	27	585 M / 220	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20		
6	19.6	595 M/ 270 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20		
7	17.3	256 M / 116 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20		
8	14.6	340 M/ 145 M	262 MeV		Run-14, 19	8	15(08)	110 M	500 MeV	1.52	Pup 20		
9	11.5	257 M/ 110 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20		
10	9.2	160 M/ 78 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20		
11	7.7	104 M / 45 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19		
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, <mark>21</mark>		

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Nu Xu

"The 14th International Conference on Nucleus Nucleus Collisions", Whistler, British Columbia, August 18-23, 2024

1) Introduction

2) Selected Recent Results

- Collectivity
- Baryon Correlations and Hyper-Nuclei Productions
- Criticality from BES-II (collider)

3) Summary and Outlook

High Moments from BES-II

Precision Measurements of (Net-)Proton Number Fluctuations in Au+Au Collisions at RHIC (STAR Collaboration)

M. A. Stephanov, PRL 107 (2011) 052301

Proton Identification at BES-II

ິ ວັ ວັ			99.2	99.2	4u+A	99.4	99.3	IN =	19.6 ⁹⁹	Ge\	99.2	99.2		-		Detector	ТРС	TPC+TOF
Ce C	-		99.7 99.2 99.7 99.2 99.6	99.6 99.2 99.6 99.1 99.5	99.5 99.3 99.6 99.3 99.3	99.5 99.3 99.5 99.3 99.3	99.6 99.3 99.6 99.2 99.4	99.7 99.1 99.6 99.1 99.5	99.7 99 99.8 98.9 99.6	99.8 99 99.7 99 99.7	99.9 99.2 99.7 99.2 99.2 99.6	99.8 99.2 99.7 99.2 99.7 99.2		-		dE/dx	$ n\sigma $	< 2
ے ۲	╞	TOF	99.1 99.4 99 99.2 99	99.1 99.4 99 99.1 99	99.2 99.3 99.2 99.1 99.3	99.3 99.2 99.3 99 99.3	99.2 99.3 99.2 99.1 99.2	99.1 99.3 99 99.2 99.1	98.9 99.5 98.9 99.4 98.9	99 99.6 98.9 99.5 99	99.1 99.4 99.1 99.2 99.1	99.1 99.4 99.1 99.2 99		-		m ² (GeV/c ²) ²	NA	0.6 – 1.2
	Ľ		99 99 98.9 99.1 98.9	99 99 98.9 99.1 98.9	99 99.3 98.9 99.4 99	99 99.4 98.9 99.5 99	99 99.3 98.9 99.4 99.1	99.1 99.1 99 99.2 99.1	99.3 98.9 99.2 99 99.3	99.3 99 99.2 99.1 99.3	99 99.1 98.9 99.1 98.9	99 99 99 99 99 98.9		_		p_T (GeV/c)	0.4 – 0.8	0.8 – 1.2
1	L	N	99.2 99.1 99.4 99.3 99.6	99.3 99.2 99.5 99.4 99.6	99.6 99.3 99.8 99.6 99.8	99.7 99.3 99.8 99.6 99.9	99.5 99.3 99.6 99.5 99.8	99.3 99.3 99.4 99.6 99.6	99.1 99.4 99.2 99.6 99.4	99.2 99.4 99.4 99.5 99.5	99.2 99.1 99.3 99.3 99.4	99.1 99 99.2 99.3 99.3	1	_		rapidity	y <	0.5
0	Acce y > 0 y < 0	TPC eptance: D: $V_z \in (-$ D: $V_z \in (-$	100 100 100 100 100 100 100 100 100 100	99.6 99.6 99.7 100						rity: oton - proton		 Uniform acce protons y <0 (anti-)protons dE/dx and TC Bin-by-bin pu acceptance ra energies 	anti-) < 50cm; sing TPC the full					

"The 14th International Conference on Nucleus Nucleus Collisions", Whistler, British Columbia, August 18-23, 2024

BES-II: Centrality Determination

Reference multiplicity measurements RefMult3: TPC measured charge particles except (anti-)protons

- 1) RefMult3: ($|\eta| < 1.0$) for both BES-I and BES-II 2) RefMult3X: ($|\eta| < 1.6$) for BES-II
 - \rightarrow Larger acceptance \rightarrow larger multiplicity \rightarrow better centrality resolution

"The 14th International Conference on Nucleus Nucleus Collisions", Whistler, British Columbia, August 18-23, 2024

Net-p from BES-II

- 1) Raw number distributions from BES-II: Uncorrected for detector efficiency;
- 2) Mean increases with decreasing collision energy: Effect of baryon stopping;
- The increase in the width is due to the increase of proton numbers at lower energy

0-5%: C ₄ /C ₂ improvement factor BES-II / BES-I										
7.7	GeV	19.6 GeV								
Stat.	Syst.	Stat.	Syst.							
4.7	3.2	4.5	4							
*Embedding statistics increased by a factor of 5!										

STAR: CPOD2024, SQM2024

Conserved Quantities (B, Q, S)

- 1) In strong interactions, baryons (B), charges (Q) and strangeness (S) are conserved;
- 2) Higher order moments/cumulants describe the shape of distributions and quantify fluctuations. They are sensitive to the correlation length ξ , phase structure;
- 3) Direct connection to theoretical calculations of susceptibilities.

Cumulants of Net-p from BES-II

Net-p Cumulant Ratios

"The 14th International Conference on Nucleus Nucleus Collisions", Whistler, British Columbia, August 18-23, 2024

Energy Dependence of Cumulant Ratios

- UrQMD: hadronic transport and the results are analyzed in the same way as data.
 S. Bass *et al.*, Prog. Part. Nucl. Phys., <u>41</u>, 255 (1998);
- 2) HRG CE: P.B. Munzinger et al. Nucl. Phys. A1008, 122141(2021);
- 3) Hydro: HRG CE + EV collectivity. V. Vovchenko et al., Phys. Rev. <u>C105</u>, 014904 (2022).
- 4) LQCD GCE: done for net-baryon A. Bazavov et al., Phys. Rev. D101, 074502 (2020).

Baryon conservations applied in all model calculations except LQCD!

Deviations from Non-CP Models

1) Introduction

2) Selected Recent Results

- Collectivity
- Baryon Correlations and Hyper-Nuclei Productions
- Criticality from BES-II (collider)

3) Summary and Outlook

Summary

Search for QCD critical point:

- BES-II data offered high statistics, better acceptance, centrality resolution and systematic;
- ➢ Known model calculations **Do Not** reproduce the energy dependence ($\sqrt{s_{NN}}$ = 7.7 − 200 GeV)

Outlook:

- (i) Transverse momentum p_T and rapidity scan;
- (ii) Higher orders: C_5 , and C_6 analysis;
- (iii) Complete FXT data analysis at $\sqrt{s_{NN}} = 3 3.9$ GeV

2024

Future Physics Programs at High μ_B

Acknowledgements:

RHIC and STAR Experiment P. Braun-Munzinger, X. Dong, S. Esumi, F. Karsch, V. Koch, XF. Luo, B. Mohanty, *A. Pandav*, A. Rustamov, K. Redlich, M. Stephanov, J. Stachel, J. Stroth, V. Vovchenko, *Y. Zhang*

Thank you for your attention!