Neutrino: their origin and their role in matter-antimatter asymmetry

Arnab Dasgupta

PITT-PACC, Department of Physics and Astronomy, University of Pittsburgh

March 6, 2024

Outline

© Evidence of mass & neutrinos by Dosellation

CP? Mass Hierarchy? Nature?

- @ Mass Models
 - Majorana mass models
 - Dirac mass models
- Explanation of Matter Asymmetry

 Lepton number violation via Majorana mass

- Dirac Leptogenesis
- Occrelation & it's constraints from Flavor Physics

Discovery of v-oscillation:

The flavor eigenstate of v's are admixtures of mass eigenstates

Uai => Pontecorvo-Maki-Nakagawa-Sataka (PMNS) matrix

Discovery of v-oscillation:

The flavor eigenstate of v's are admixtures of mass eigenstates

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

$$\Delta m^2 L \simeq 1027 \Delta m^2 L GeV$$

$$4E$$

Golobal Fit to neutrino Oscillation data

parameter	best fit $\pm 1\sigma$	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} {\rm eV}^2]$	$7.50^{+0.22}_{-0.20}$	7.12 - 7.93	6.94-8.14
$ \Delta m_{31}^2 [10^{-3}\text{eV}^2]$ (NO)	$2.55_{-0.03}^{+0.02}$	2.49 – 2.60	2.47 – 2.63
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2]$ (IO)	$2.45^{+0.02}_{-0.03}$	2.39 – 2.50	2.37 – 2.53
$\sin^2 \theta_{12}/10^{-1}$	3.18 ± 0.16	2.86 – 3.52	2.71 – 3.69
$\theta_{12}/^{\circ}$	34.3 ± 1.0	32.3 – 36.4	31.4 – 37.4
$\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}$	5.74 ± 0.14	5.41 - 5.99	4.34 – 6.10
$\theta_{23}/^{\circ} (\mathrm{NO})$	49.26 ± 0.79	47.37 - 50.71	41.20 – 51.33
$\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}$	$5.78^{+0.10}_{-0.17}$	5.41 - 5.98	4.33 – 6.08
$\theta_{23}/^{\circ}$ (IO)	$49.46^{+0.60}_{-0.97}$	47.35 - 50.67	41.16 – 51.25
$\sin^2 \theta_{13} / 10^{-2}$ (NO)	$2.200^{+0.069}_{-0.062}$	2.069 - 2.337	2.000 – 2.405
$\theta_{13}/^{\circ} (\mathrm{NO})$	$8.53^{+0.13}_{-0.12}$	8.27 – 8.79	8.13 – 8.92
$\sin^2 \theta_{13}/10^{-2}$ (IO)	$2.225^{+0.064}_{-0.070}$	2.086 – 2.356	2.018 – 2.424
$\theta_{13}/^{\circ}$ (IO)	$8.58^{+0.12}_{-0.14}$	8.30 – 8.83	8.17 – 8.96
δ/π (NO)	$1.08^{+0.13}_{-0.12}$	0.84 - 1.42	0.71 – 1.99
$\delta/^{\circ}$ (NO)	194^{+24}_{-22}	152 - 255	128 – 359
δ/π (IO)	$1.58^{+0.15}_{-0.16}$	1.26 - 1.85	1.11-1.96
$\delta/^{\circ}$ (IO)	284^{+26}_{28}	226-332	200-353

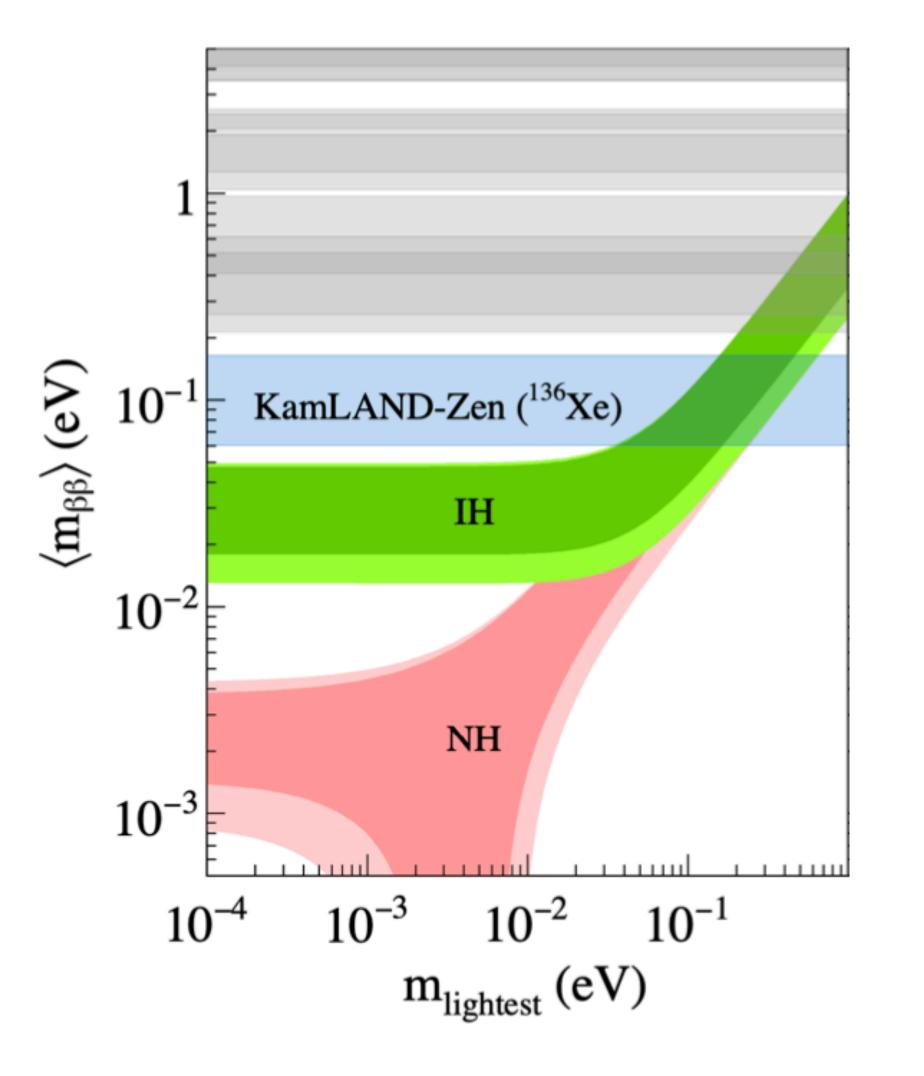
Global Fif to neutrino Oscillation data

Mass Hierarchy = [

parameter	best fit $\pm 1\sigma$	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} {\rm eV}^2]$	$7.50^{+0.22}_{-0.20}$	7.12 - 7.93	6.94 – 8.14
$ \Delta m_{31}^2 [10^{-3}\text{eV}^2]$ (NO)	$2.55^{+0.02}_{-0.03}$	2.49 - 2.60	2.47 - 2.63
$ \Delta m_{31}^2 [10^{-3} {\rm eV^2}]$ (IO)	$2.45^{+0.02}_{-0.03}$	2.39 - 2.50	2.37 - 2.53
$\sin^2 \theta_{12}/10^{-1}$	3.18 ± 0.16	2.86 – 3.52	2.71 – 3.69
$\theta_{12}/^{\circ}$	34.3 ± 1.0	32.3 – 36.4	31.4 – 37.4
$\sin^2 \theta_{23}/10^{-1} \text{ (NO)}$	5.74 ± 0.14	5.41 - 5.99	4.34 – 6.10
$\theta_{23}/^{\circ} \text{ (NO)}$	49.26 ± 0.79	47.37 - 50.71	41.20 - 51.33
$\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}$	$5.78^{+0.10}_{-0.17}$	5.41 - 5.98	4.33 - 6.08
$\theta_{23}/^{\circ}$ (IO)	$49.46^{+0.60}_{-0.97}$	47.35 – 50.67	41.16 - 51.25
$\sin^2 \theta_{13} / 10^{-2} \text{ (NO)}$	$2.200^{+0.069}_{-0.062}$	2.069 - 2.337	2.000 - 2.405
$\theta_{13}/^{\circ} (\mathrm{NO})$	$8.53^{+0.13}_{-0.12}$	8.27 – 8.79	8.13 – 8.92
$\sin^2 \theta_{13}/10^{-2} \text{ (IO)}$	$2.225^{+0.064}_{-0.070}$	2.086 - 2.356	2.018 – 2.424
$\theta_{13}/^{\circ}$ (IO)	$8.58^{+0.12}_{-0.14}$	8.30 - 8.83	8.17 – 8.96
δ/π (NO)	$1.08^{+0.13}_{-0.12}$	0.84 - 1.42	0.71 - 1.99
$\delta/^{\circ}$ (NO)	194^{+24}_{-22}	152 - 255	128 – 359
δ/π (IO)	$1.58^{+0.15}_{-0.16}$	1.26 - 1.85	1.11 - 1.96
$\delta/^{\circ}$ (IO)	284^{+26}_{28}	226 - 332	200-353

 $m_1 = (NO)$ $m_3 = (NO)$

CP 7 4


Mature of v, Majorana? Dirac?

OUBBDECAY Experiment

If vs are majorana the effective mass is given as

Mpp= 42 613 e m, + 613 512 e m2 + 513 m3

[arxiv:2108-09364]

Mature of v, Majorana ? Dirac?

If ONBB is discovered who Lepton number is violated

Us vs are Majorana !!

Schechter Valle theorem [PRD 25 (1982)
2951]

Mass Models Manual M

Majorana Neutrinos

Mass Models

Majorana Neutrinos

W Type I, III

Majorana Neutrinos

Wype I, II Wype I

- Majorana Neutrinos
 - Type I, II

 Type I

 Type I

 - M Inverse See-Saw

- Majorana Neutrinos
 - Type I, III
 Blype I

 - 1 Inverse See-Saw
 - Radictive neutrino mass model

- Majorana Neutrinos
 - Wype I, II Wype I

 - M Inverse See-Saw
 - Radiative neutrino mass model

- Majorana Neutrinos
 - Wype I, II

 - M Inverse See-Saw
 - Radiative neutrino mass model

Drac Neutrinos

- Majorana Neutrinos
 - Wype I, II

 - M Inverse See-Saw
 - Radiative neutrino mass model

Dirac Neutrinos

W Type-I

- Majorana Neutrinos
 - Wape I, II Wape I

 - M Inverse See-Saw
 - Radiative neutrino mass model

- Drac Neutrinos
 - W Type-I
 - 1 Inverse See-Saw

- Majorana Neutrinos
 - Wype I, II

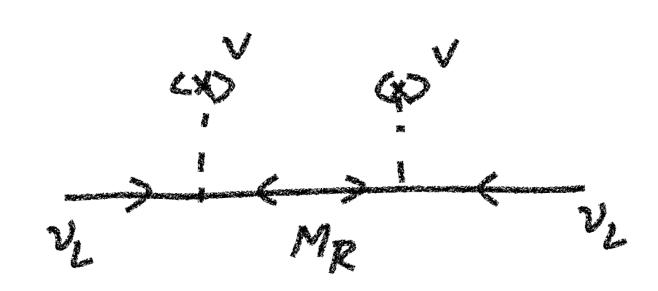
 - M Inverse See-Saw
 - Radiative neutrino mass model

- Dirac Neutrinos
 - W Type-I
 - D Inverse See-Sow
 - Radiative neutrino mass model

Mass Models

- Majorana Neutrinos
 - Type I, III
 - B Type I
 - M Inverse See-Saw
 - Radiative neutrino mass model

Dirac Neutrinos


- W Type-I
- D Inverse See-Saw
- Radiative neutrino mass model

d Tree of LHUR

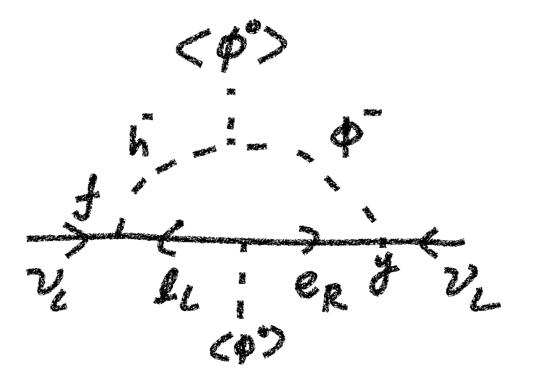
Breaking B-L: New scale and new symmetry beyond SM.

$$\Psi = \begin{pmatrix} \Sigma^{0}/\sqrt{\chi} & \Sigma^{t} \\ \Sigma^{-} & \Sigma^{0}/\sqrt{\chi} \end{pmatrix} \qquad m_{v} = \begin{pmatrix} 0 & m_{D} \\ m_{D}^{T} & M \end{pmatrix} = -y_{v}^{2} \frac{v^{2}}{M_{R}}$$

O Lipe I :

	SVC	761	< 5 V	(2)LX	VC	24
۵	(2)	3	, 1)	

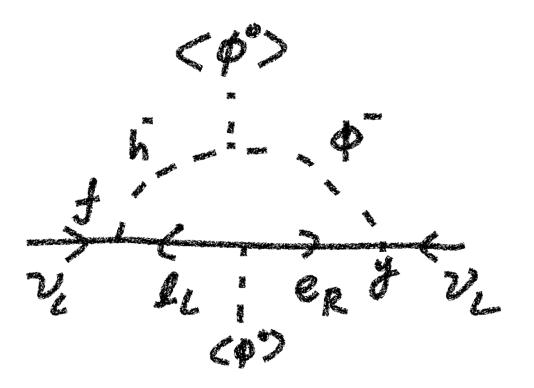
DINVERSE SEE-Saw


$$m_{\nu} = \begin{pmatrix} 0 & y_{0} \vee & 0 \\ y_{0} \vee & 0 & y_{0} \vee p \\ 0 & y_{0} \vee & p \end{pmatrix} \simeq -y_{0}^{T} y_{0}^{T} \mu y_{0}^{T} y_{0} \left(\frac{v_{0}}{v}\right)^{2}$$

	SU(3) XSU(2) XU(1) Y
SZ	(1,1,0)
NS	(1,1,0)

@ Rodiative Neutrino Mass Model (1-Loop only)

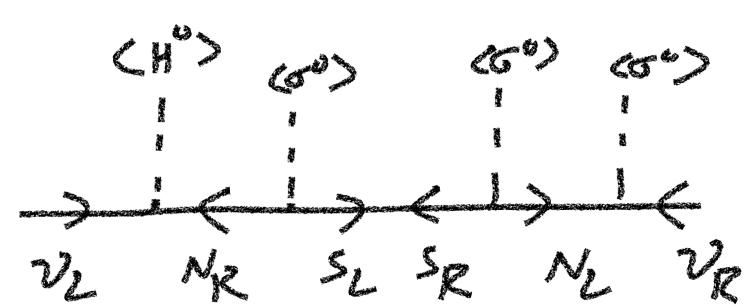
Dee-Babu model


@ Scotogenic model

@ Radiative Neutrino Mass Model (1-Loop only)

Dee-Babu model

@ Scotogenic model


Mass Models (Dirac Scenario)

O TYPE I O

@ Inverse See-Saw?

$$J = y_{0} I H N_{R} + y_{s} N_{L} v_{R} \sigma + y_{s} N_{S} \sigma + \mu_{D} \bar{S} S + h.c$$

$$m_{v} = \begin{pmatrix} 0 & j_{0} v_{H} & 0 \\ y_{0} v_{H} & 0 & y_{s} v_{b} \end{pmatrix} \qquad (H^{o}) \qquad (G^{o}) \qquad (G^{o})$$

Mass Models (Dirac Scenario)

Padiative Mass Model?

2 3 Jo IMR + MAINR + JOAN VR + h.c.

Mass Models (Dirac Scenario)


Padiative Mass Model?

2 3 Jo IMR + MAINR + JONEUR + h.c.

Mater Asymmety

- The Standard Model does not explain the present asymmetry
 - 1. The CP violation coming from

 Jaylskog invarient is of the order 10.
 - 2. The experimental lower bound on the Higgs mass implies the transition is not strongly first order.

Mater Asymmety

- The observed BAU is often quoted in terms of baryon to Photon ratio
 - $V_{B} = \frac{N_{B} N_{\overline{B}}}{N_{V}} = 6.04 \pm 0.08 \times 10^{10} \Rightarrow V_{B}^{\circ} = V_{B}/7.04 \Rightarrow N_{B}h^{2} = \frac{S_{U}}{S_{c}} V_{B}^{\circ} \sim 2.26\%$
- The prediction for this ratio from Big-Bang Nucleosynthesis (BBN) agrees well with the observed value from Cosmic Microwave Background Radiation (CMBR) measurements.

Lakharov's Conditions

- The three basic ingredients necessary to generate a net baryon asymmetry from an initially baryons symmetric Universe (1967)
 - 1. Baryon Number (B) violation X -> Y+B
 - 2. C and CP vidation

$$\Gamma(x \rightarrow y + B) \neq \Gamma(\bar{x} \rightarrow \bar{y} + \bar{B})$$

3. Departure from thermal Equilibrium

Recipe for Asymmetry

- Now, in order to get a non-zero CP violation we start need at-least two distinct amplitude for a particular process.
- In order to understand the above clasm we start with the amplitude of a B-violating process (X→b)

$$i\mathcal{M} = (\mathcal{C}_{1}\mathcal{A}_{1} + \mathcal{C}_{1}\mathcal{A}_{1})if$$

$$Similarly, for anti-particle$$

$$i\mathcal{M} = (\mathcal{C}_{1}^{*}\mathcal{A}_{1} + \mathcal{C}_{2}^{*}\mathcal{A}_{1})f^{*}$$

$$i\mathcal{M} = (\mathcal{C}_{1}^{*}\mathcal{A}_{1} + \mathcal{C}_{2}^{*}\mathcal{A}_{1})f^{*}$$

Recipe Jos Asymmetry

The difference between the two processes comes out to be

8 = 4 Im [Et &] Im [At As] 412

Purely from coupling

Le ptogenesis from V-Mass mode! (Majorana Case)

dograngian

Leptogenesis from V-Mass mode! (Majorana Case)

dograngian

(Liu & Segre 193)

Leptogenesis from V-Mass mode I (Majorana Case)

@dograngian

Le ptogenesis from V-Mass mode! (Majorana Case)

dograngian

$$M = y' N y'$$
 $U - mass$

$$D_{m_{\nu}} = \begin{pmatrix} \sqrt{m_{\nu_{1}}} & 0 & 0 \\ 0 & \sqrt{m_{\nu_{2}}} & 0 \\ 0 & 0 & \sqrt{m_{\nu_{3}}} \end{pmatrix}; D_{m} = \begin{pmatrix} \sqrt{m_{\nu_{1}}} & 0 & 0 \\ 0 & \sqrt{m_{\nu_{3}}} & 0 \\ 0 & 0 & \sqrt{m_{\nu_{3}}} \end{pmatrix}$$

Le ptogenesis from V-Mass mode I (Majorana Case)

dograngian

$$D_{m_{\nu}} = \begin{pmatrix} \overline{m_{\nu}}, & 0 & 0 \\ 0 & \overline{m_{\nu_2}} & 0 \\ 0 & 0 & \overline{m_{\nu_3}} \end{pmatrix}; D_{\overline{m}} = \begin{pmatrix} \overline{m_{\nu}}, & 0 & 0 \\ 0 & \overline{m_{\nu}}, & 0 \\ 0 & 0 & \overline{m_{\nu_3}} \end{pmatrix}$$

Casas-Ibarra Parameterization

Leptogenesis from V-Mass model (Dirac Case)

Ødograngian

2 > y lah X; + mij X; X; + jia X; o va + h.c

(Cerdeño, Dedes & Underwood '06)

mu= vvo (y M'y) dy

Leptogenesis from V-Mass model (Dirac Case)

Ø LOGTANJAN

and Dirac Leptogenesis

Leptogenesis from V-Mass model (Dirac Case)

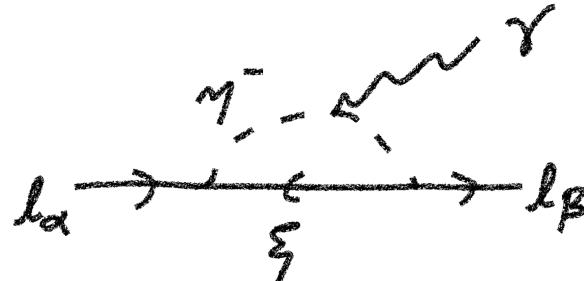
O dograngian

ad Dirac Leptogenesis

Proid left-right equilibration

Correlation à bounds font Flavor Physics

iv-mass& mixing | Baryon Asymmetry;

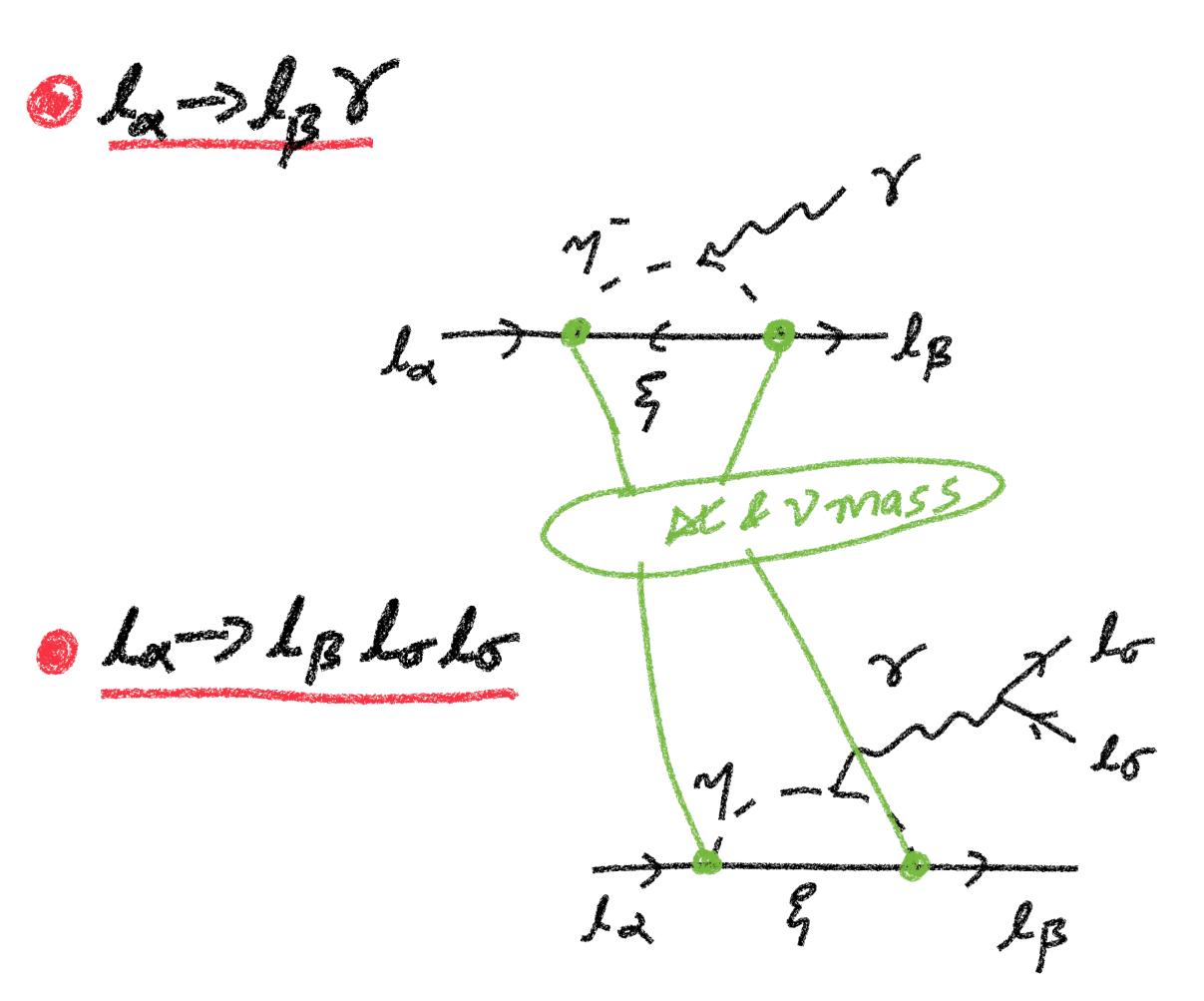

$$y=VUDR^{\dagger}D_{VN}$$
 (Majorana Case)

 $y=I(AD_{VN}D_{VN})$ (Dirac

 $y=I(AD_{VN}D_{VN})$ (Dirac

 $y=I(D_{VN}X^{\dagger}D_{VN})$ (Case)

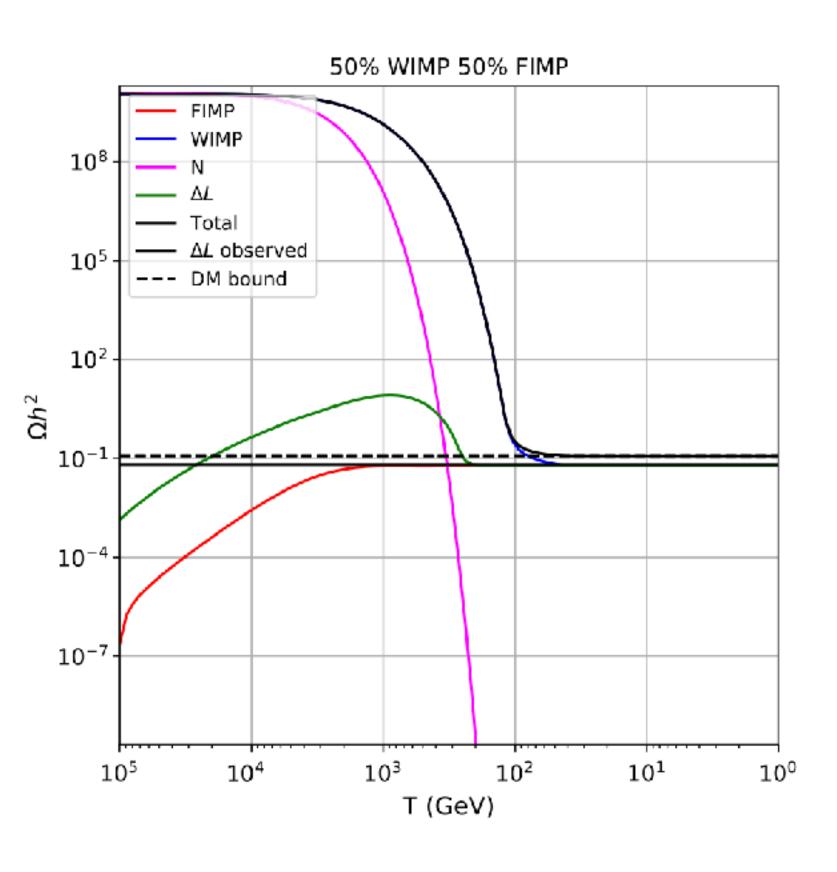
Correlation & bounds from Flavor Physics

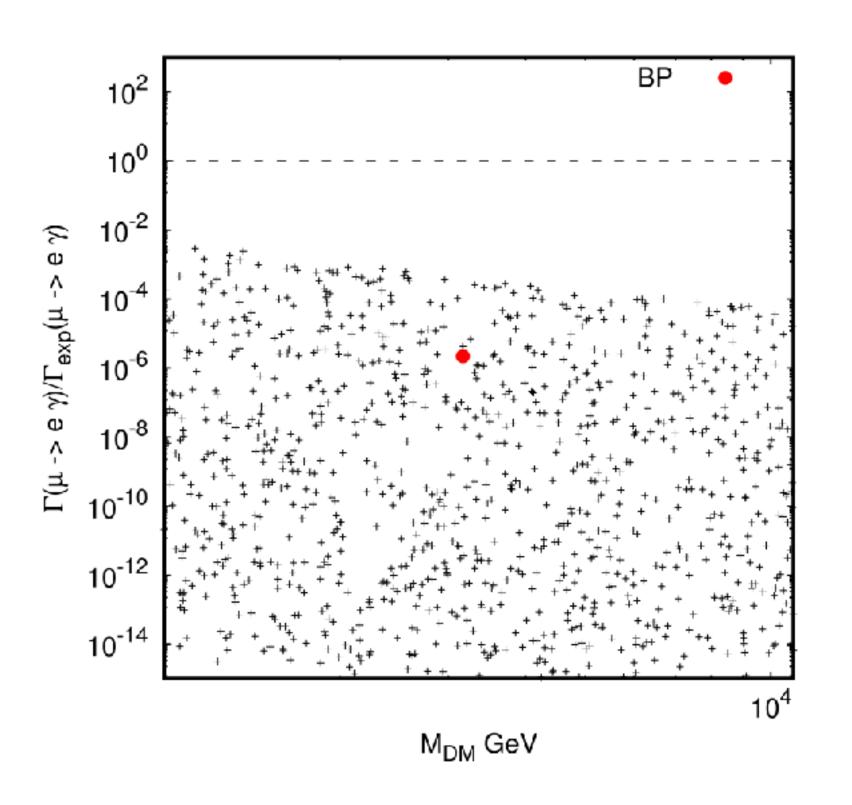


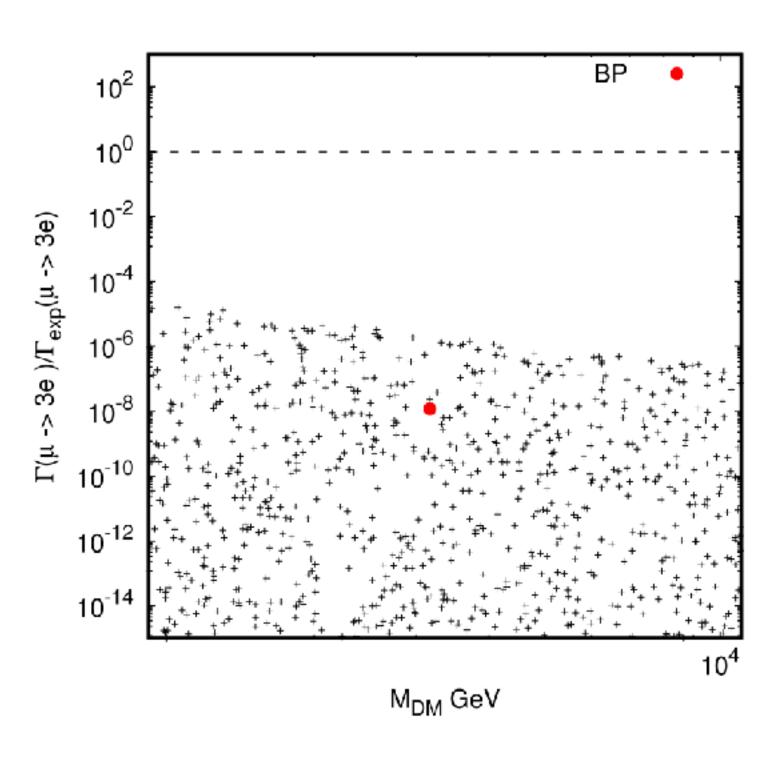
(Scotogenic & it's varient)

O Land LB Lolo

Note to

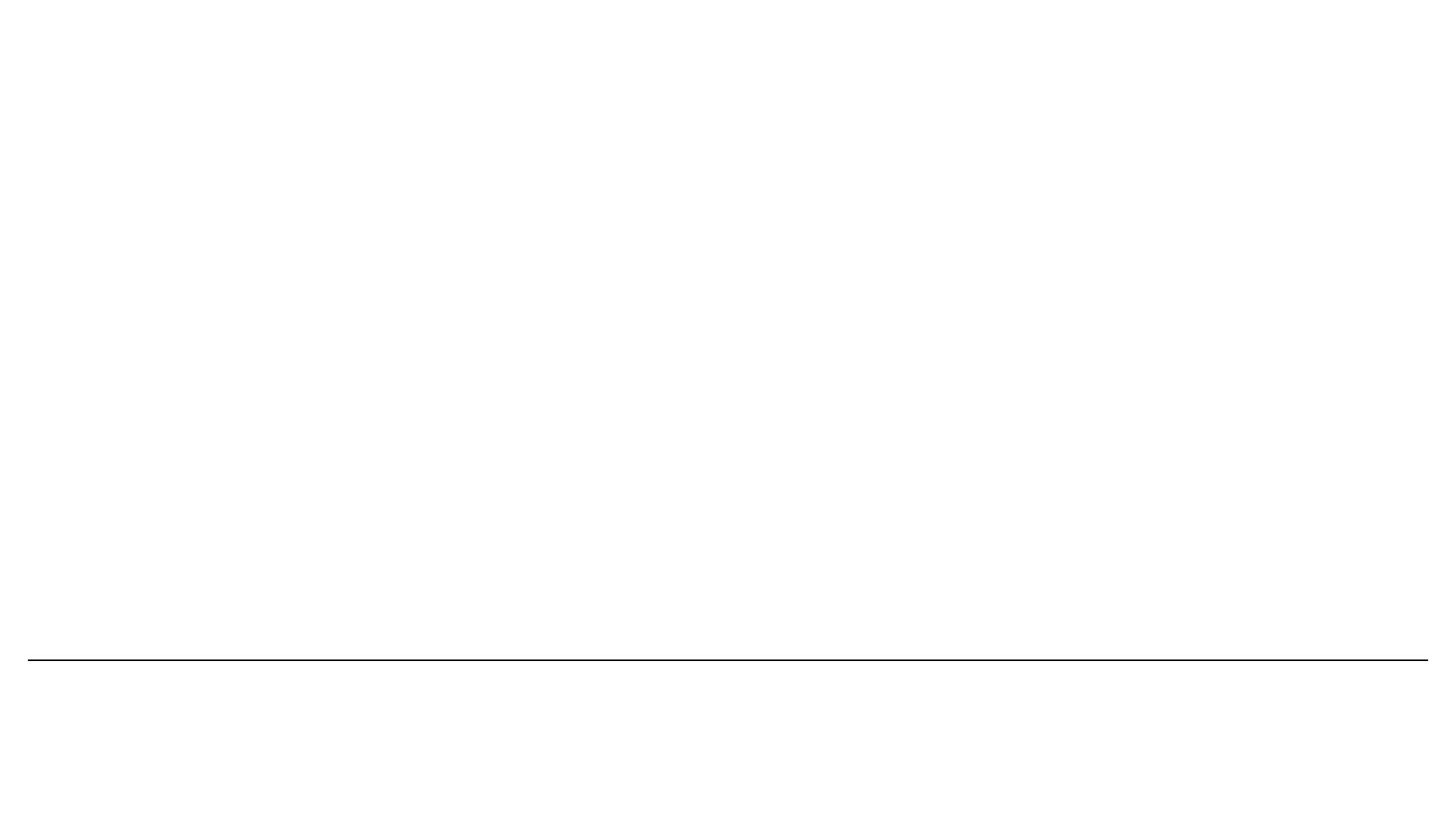

Correlation à bounds font Flavor Physics




(Scotogenic & it's varient)

An example

Correlation à bounds font Flavor Physics



[arxiv: 1903.10516 D. Borah, A. Dasgupta, S.k. Kang]

Thank you oo

