Entanglement of astrophysical neutrinos

A.B. Balantekin

TRIUMF Theory Workshop: Neutrinos is Cosmology and Astrophysics

Neutrinos from core-collapse supernovae 1987A

$$
\begin{gathered}
\cdot M_{\text {prog }} \geq 8 M_{\text {sun }} \Rightarrow \Delta E \approx 10^{53} \text { ergs } \approx \\
10^{59} \mathrm{MeV}
\end{gathered}
$$

-99\% of the energy is carried away by neutrinos and antineutrinos with $10 \leq E_{v} \leq 30 \mathrm{MeV} \Rightarrow 10^{58}$ neutrinos

Understanding a core-collapse supernova requires answers to a variety of questions some of which need to be answered, both theoretically and experimentally.

Balantekin and Fuller, Prog. Part. Nucl. Phys. 71162 (2013)

MSW oscillations

 (low neutrino density)Collective oscillations (high neutrino density)

Neutrinos forward scatter from each other

Neutrinos forward scatter from background particles

Energy released in a core-collapse $S N: \Delta E \approx 10^{53}$ ergs $\approx 10^{59} \mathrm{MeV}$ 99% of this energy is carried away by neutrinos and antineutrinos! ~ 10^{58} Neutrinos!
This necessitates including the effects of $v v$ interactions ("collective neutrino oscillations")!

$$
\begin{aligned}
& H=\sum a^{\dagger} a+\sum(1-\cos \varphi) a^{\dagger} a^{\dagger} a a \\
& v \text { oscillations } \\
& \text { neutrino-neutrino interactions }
\end{aligned}
$$

The second term makes the physics of a neutrino gas in a core-collapse supernova a very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

$$
\frac{\partial \rho}{\partial t}=-i[H, \rho]+C(\rho)
$$

$H=$ neutrino mixing

+ forward scattering of neutrinos off other background particles (MSW) + forward scattering of neutrinos off each other
$C=$ collisions

Neutrino flavor isospin

$$
\begin{gathered}
\hat{J}_{+}=a_{e}^{\dagger} a_{\mu} \quad \hat{J}_{-}=a_{\mu}^{\dagger} a_{e} \\
\hat{J}_{0}=\frac{1}{2}\left(a_{e}^{\dagger} a_{e}-a_{\mu}^{\dagger} a_{\mu}\right)
\end{gathered}
$$

These operators can be written in either mass or flavor basis

Free neutrinos (only mixing)

$$
\begin{aligned}
\hat{H} & =\frac{m_{1}^{2}}{2 E} a_{1}^{\dagger} a_{1}+\frac{m_{2}^{2}}{2 E} a_{2}^{\dagger} a_{2}+(\cdot \cdot) \hat{1} \\
& =\frac{\delta m^{2}}{4 E} \cos 2 \theta\left(-2 \hat{J}_{0}\right)+\frac{\delta m^{2}}{4 E} \sin 2 \theta\left(\hat{J}_{+}+\hat{J}_{-}\right)+(\cdot)^{\prime} \hat{1}
\end{aligned}
$$

Interacting with background electrons

$$
\hat{H}=\left[\frac{\delta m^{2}}{4 E} \cos 2 \theta-\frac{1}{\sqrt{2}} G_{F} N_{e}\right]\left(-2 \hat{J}_{0}\right)+\frac{\delta m^{2}}{4 E} \sin 2 \theta\left(\hat{J}_{+}+\hat{J}_{-}\right)+(\cdot \cdot)^{\prime \prime} \hat{\imath}
$$

Note that

$$
\begin{gathered}
J_{o}=\frac{1}{2}\left(a_{e}^{\dagger} a_{e}-a_{\mu}^{\dagger} a_{\mu}\right) \\
N=\left(a_{e}^{\dagger} a_{e}+a_{\mu}^{\dagger} a_{\mu}\right)=\mathrm{constant}
\end{gathered}
$$

Hence $\sum P_{0} \equiv \operatorname{Tr}\left(\rho J_{0}\right)$ is an observable giving numbers of neutrinos of each flavor

Note $\quad \rho=\frac{1}{2}(1+\vec{\sigma} \cdot \vec{P}) \quad$ single neutrino density matrix

Neutrino-Neutrino Interactions

Smirnov, Fuller, Qian, Pantaleone, Sawyer, McKellar, Friedland, Lunardini, Raffelt, Duan, Balantekin, Volpe, Kajino, Pehlivan

$$
\hat{H}_{v v}=\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}}_{p} \cdot \overrightarrow{\mathbf{J}}_{q}
$$

This term makes the physics of a neutrino gas in a core-collapse supernova a genuine many-body problem

$$
\begin{aligned}
& \hat{H}=\int d p\left(\frac{\delta m^{2}}{2 E} \overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{J}}_{p}-\sqrt{2} G_{F} N_{e} \mathbf{J}_{p}^{0}\right)+\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}}_{p} \cdot \overrightarrow{\mathbf{J}}_{q} \\
& \overrightarrow{\mathbf{B}}=(\sin 2 \theta, 0,-\cos 2 \theta)
\end{aligned}
$$

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

Including antineutrinos

$$
H=H_{\nu}+H_{\bar{\nu}}+H_{\nu \nu}+H_{\bar{\nu} \bar{\nu}}+H_{\nu \bar{\nu}}
$$

Requires introduction of a second set of $\mathrm{SU}(2)$ algebras!

Including three flavors

Requires introduction of $\operatorname{SU}(3)$ algebras.
Both extensions are straightforward, but tedious! Balantekin and Pehlivan, J. Phys. G 34, 1783 (2007).

This problem is "exactly solvable" in the single-angle approximation

$$
\begin{gathered}
H=\sum_{p} \frac{\delta m^{2}}{2 p} \hat{B} \cdot \vec{J}_{p}+\frac{\sqrt{2} G_{F}}{V} \sum_{\mathbf{p}, \mathbf{q}}\left(1-\cos \vartheta_{\mathbf{p q}}\right) \overrightarrow{J_{\mathbf{p}}} \cdot \vec{J}_{\mathbf{q}} \\
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath}
\end{gathered}
$$

Note that this Hamiltonian commutes with $\vec{B} \cdot \sum_{p} J_{p}$.
Hence $\operatorname{Tr}\left(\rho \vec{B} \cdot \sum_{p} J_{p}\right)$ is a constant of motion.
In the mass basis this is equal to $\operatorname{Tr}\left(\rho J_{3}\right)$.

Two of the adiabatic eigenstates of this equation are easy to find in the single-angle approximation:

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{J} \cdot \vec{\jmath} \\
|j,+j\rangle=|N / 2, N / 2\rangle=\left|\nu_{1}, \ldots, \nu_{1}\right\rangle \\
|j,-j\rangle=|N / 2,-N / 2\rangle=\left|\nu_{2}, \ldots, \nu_{2}\right\rangle \\
E_{ \pm N / 2}=\mp \sum_{p} \omega_{p} \frac{N_{p}}{2}+\mu \frac{N}{2}\left(\frac{N}{2}+1\right)
\end{gathered}
$$

To find the others will take a lot more work

Away from the mean-field: Adiabatic solution of the exact many-body Hamiltonian for extremal states

Adiabatic evolution of an initial thermal distribution ($\mathrm{T}=10 \mathrm{MeV}$) of electron neutrinos. 10^{8} neutrinos distributed over 1200 energy bins with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767 PRD98 (2018) 083002

BETHE ANSATZ

Single-angle approximation Hamiltonian:

$$
H=\sum_{p} \frac{\delta m^{2}}{2 p} J_{p}^{0}+2 \mu \sum_{\substack{p, q \\ p \neq q}} \mathbf{J}_{p} \cdot \mathbf{J}_{q}
$$

$$
\mu=\frac{G_{F}}{\sqrt{2} V}\langle 1-\cos \Theta\rangle
$$

Eigenstates:

$$
\begin{aligned}
& \left|x_{i}\right\rangle=\prod_{i=1}^{N} \sum_{k} \frac{J_{k}^{\dagger}}{\left(\delta m^{2} / 2 k\right)-x_{i}}|0\rangle \\
& -\frac{1}{2 \mu}-\sum_{k} \frac{j_{k}}{\left(\delta m^{2} / 2 k\right)-x_{i}}=\sum_{j \neq i} \frac{1}{x_{i}-x_{j}}
\end{aligned}
$$

Invariants:

$$
h_{p}=J_{p}^{0}+2 \mu \sum_{\substack{p, q \\ p \neq q}} \frac{\mathbf{J}_{p} \cdot \mathbf{J}_{q}}{\delta m^{2}\left(\frac{1}{p}-\frac{1}{q}\right)}
$$

Pehlivan, ABB, Kajino, \& Yoshida Phys. Rev. D 84, 065008 (2011)

A system of N particles each of which can occupy k states ($k=$ number of flavors)

\section*{Exact Solution \longrightarrow Mean-field approximation
 | Entangled and |
| :---: |
| unentangled states |\rightarrow Only unentangled states}

Dimension of Hilbert
space: k^{N}
von Neumann entropy

```
S=-Tr}(\rho\operatorname{log}\rho
```

	Pure State	Mixed State
Density matrix	$\rho^{2}=\rho$	$\rho^{2} \neq \rho$
Entropy	$S=0$	$S \neq 0$

Pick one of the neutrinos and introduce the reduced density matrix for this neutrino (with label "b")

$$
\tilde{\rho}=\rho_{b}=\sum_{a, c, d, \ldots}\left\langle v_{a}, v_{c}, v_{d}, \cdots\right| \rho\left|v_{a}, v_{c}, v_{d}, \cdots\right\rangle
$$

Entanglement entropy

$$
\begin{gathered}
S=-\operatorname{Tr}(\tilde{\rho} \log \tilde{\rho}) \\
\tilde{\rho}=\frac{1}{2}(\mathbb{I}+\vec{\sigma} \cdot \vec{P}) \\
S=-\frac{1-|\vec{P}|}{2} \log \left(\frac{1-|\vec{P}|}{2}\right)-\frac{1+|\vec{P}|}{2} \log \left(\frac{1+|\vec{P}|}{2}\right)
\end{gathered}
$$

Techniques to solve the exact evolution

- Bethe ansatz method has numerical instabilities for larger values of N. However, it is very valuable since it leads to the identification of conserved quantities. Patwardhan et. al., PRD 99, 123013 (2019); Cervia et al., PRD 100, 083001 (2019)
- Runge Kutta method (RK4)

Patwardhan et. al., PRD 104, 123035 (2021), Siwach et. al. PRD 107, 023019 (2023)

- Tensor network techniques

Cervia et al., PRD 105, 123025 (2022)

- Noisy quantum computers

Siwach et. al., 2308.09123 [quant-ph]

Computation times:

Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv:2202.01865

Initial state: all electron neutrinos

Note: S = 0 for meanfield approximation

Cervia, Patwardhan, Balantekin,
Coppersmith, Johnson,
arXiv:1908.03511
PRD, 100, 083001 (2019)

Cervia, Patwardhan, Balantekin,
Coppersmith, Johnson,
arXiv:1908.03511
PRD 100, 083001 (2019)

Patwardhan, Cervia, Balantekin, arXiv:2109.08995 PRD 104, 123035 (2021)

Time evolution for 12 neutrinos (initially six v_{e} and six v_{x}). D is the bond dimension. The largest possible value of D is $2^{6}=64$.

Mean Field: $\rho=\rho_{1} \otimes \rho_{2} \otimes \cdots \otimes \rho_{N}$

$$
\omega_{A}=\frac{\delta m^{2}}{2 E_{A}} \quad \mathbf{P}=\operatorname{Tr}(\rho \mathrm{J}) \quad \rho_{A}=\frac{1}{2}\left(1+\vec{\sigma} \cdot \vec{P}^{(A)}\right)
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathrm{P}^{(A)} & =\left(\omega_{A} \mathcal{B}+\mu \mathrm{P}\right) \times \mathrm{P}^{(A)} \\
\mathrm{P} & =\sum_{A} \mathrm{P}^{(A)}
\end{aligned}
$$

Adiabatic Solution: Each $P^{(A)}$ lie mostly on the plane defined by B and P with a small component perpendicular to that plane.

$$
\mathrm{P}^{(\mathrm{A})}=\alpha_{\mathrm{A}} \mathcal{B}+\beta_{\mathrm{A}} \mathrm{P}+\gamma_{\mathrm{A}}(\mathcal{B} \times \mathrm{P})
$$

Adopt for the mass basis and define $\Gamma=\left(\sum_{A} \gamma_{A} \omega_{A}\right)$. Unless Γ is positive the solutions for P_{x} and P_{y} exponentially grow.

$$
\begin{gathered}
P_{x, y}=\Pi_{x, y} \exp \left(-\int \Gamma(t) d t\right) \\
\frac{\partial}{\partial t} \Pi_{x}=\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{y}, \quad \frac{\partial}{\partial t} \Pi_{y}=-\left(\sum_{A} \beta_{A} \omega_{A}\right) \Pi_{x} .
\end{gathered}
$$

ω

Hence asymptotically P_{x} and $P_{y} g o$ to zero. Since P^{2} is one (uncorrelated neutrinos) $\left(P_{z}\right)^{2}$ goes to one.

We find that the presence of spectral splits is a good proxy for deviations from the mean-field results

Probability of observing the first mass eigenstate starting with all $v_{e}(N=16)$

$\cdots--$	Many-body
$\cdots \cdots$	Mean-field
$\cdots \cdots$	Entropy
\cdots	Initial Value

Patwardhan, Cervia, Balantekin, arXiv:2109.08995
Phys. Rev. D 104, 123035 (2021)

The impact of two different treatments of collective neutrino oscillations (with and without entanglement)

$$
\begin{gathered}
\omega_{i}=\frac{\delta m^{2}}{2 E_{i}} \\
\omega_{1}: \bar{v}_{e}, \omega_{2}: \bar{v}_{x}, \omega_{3}: v_{x}, \omega_{4}: v_{e}
\end{gathered}
$$

Balantekin, Cervia, Patwardhan, Surman, Wang; 2311.02562 [astro-ph.HE]

Considerations of collective effects unveiled a new kind of nucleosynthesis: "The vi process".

Entanglement in three-flavor collective oscillations

$$
\begin{gathered}
H=\sum_{p} \vec{B} \cdot \vec{Q}(p)+\sum_{p, k} \mu_{p k} \vec{Q}(p) \cdot \vec{Q}(k) \\
Q_{A}(p)=\frac{1}{2} \sum_{i, j=1}^{3} a_{i}^{\dagger}(p)\left(\lambda_{A}\right)_{i j} a_{j}(p) \\
B=\frac{1}{2 E}\left(0,0, m_{1}^{2}-m_{2}^{2}, 0,0,0,0,-\left|m_{3}^{2}-m_{1}^{2}\right|\right)
\end{gathered}
$$

Pooja Siwach, Anna Suliga, A.B. Balantekin Physical Review D 107 (2023) 2, 023019

Qutrits are more complicated than qubits

In the above equations $d_{i j k}$ is the completely symmetric tensor of $S U(3)$. Note the duality between SU(3) Casimir operators and invariants of the density matrix.

Putting on a quantum computer

First try: Brute Force - simple trotterization for two neutrinos and two flavors

$$
\begin{aligned}
& e^{-i \frac{\mu \prime}{2} \Delta t\left(X_{0} X_{1}+Y_{0} Y_{1}+Z_{0} Z_{1}\right)}
\end{aligned}
$$

(a)

$$
e^{-i \frac{\mu \prime}{2} \Delta t\left(X_{0} X_{1}\right)}
$$

(b)

$e^{-i \frac{\mu \prime}{2} \Delta t\left(Y_{0} Y_{1}\right)}$

Even for only two neutrinos and after reducing the number of CNOT gates, the circuits remain too deep. We then adopt a hybrid approach of Bharti and Haug, PRA 104, 042418 (2022).

Reduced number of CNOT gates

The hybrid approach of Bharti and Haug, PRA 104, 042418 (2022).

$$
\text { Hamiltonian is a sum of unitaries } H=\sum_{i=1}^{r} \beta_{i} U_{i}
$$

$$
\text { Ansatz for the state }|\phi(\alpha(t))\rangle=\sum_{i=1}^{r} \alpha_{i}(t)\left|\psi_{i}\right\rangle
$$

$$
\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\varepsilon_{i j} \quad \alpha^{\dagger} \varepsilon \alpha=1 \quad D_{i j}=\sum_{k} \beta_{k}\left\langle\psi_{i}\right| U_{k}\left|\psi_{j}\right\rangle \quad i \varepsilon \frac{\partial \alpha}{\partial t}=D \alpha(t)
$$

Choose three basis states $\left|\psi_{1}\right\rangle=X_{0}|00\rangle, \quad\left|\psi_{2}\right\rangle=X_{1}|00\rangle, \quad\left|\psi_{3}\right\rangle=X_{0} X_{1}|00\rangle$
ε and D are calculated using a quantum computer, rest is done on a classical computer

P. Siwach, K. Harrison, and A.B. Balantekin, Phys. Rev. D 108 (2023) 8, 083039

CONCLUSIONS

- Calculations performed using the mean-field approximation have revealed a lot of interesting physics about collective behavior of neutrinos in astrophysical environments. Here we have explored possible scenarios where further interesting features can arise by going beyond this approximation.
- We found that the deviation of the adiabatic many-body results from the mean field results is largest for neutrinos with energies around the spectral split energies. In our single-angle calculations we observe a broadening of the spectral split region. This broadening does not appear in single-angle mean-field calculations and seems to be larger than that was observed in multi-angle mean-field calculations (or with BSM physics).
- (From the QIS perspective) For simplicity originally two neutrino flavors were mapped onto qubits. But since neutrinos come in three flavors, neutrinos should be mapped onto qutrits. The description of qutrits is much more involved than that of qubits.

Thank you very much!

