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Neutrinos from 
core-collapse 
supernovae 1987A

•Mprog ≥  8 Msun Þ DE ≈ 1053 ergs ≈ 
1059 MeV

•99% of the energy is carried away 
by neutrinos and antineutrinos with          
10 ≤ En ≤ 30 MeV  Þ 1058 neutrinos
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Balantekin and Fuller, Prog. Part. Nucl. Phys. 71 162 (2013)

Understanding a core-collapse supernova requires answers to a 
variety of questions some of which need to be answered, both 

theoretically and experimentally.

Neutron-to-proton ratio 
depends on relative intensities 

of electron neutrinos and 
electron antineutrinos, which in 

turn depend on neutrino 
oscillations



Collective oscillations 
(high neutrino density)

Neutrinos forward scatter 
from each other

MSW oscillations 
(low neutrino density)

Neutrinos forward scatter from 
background particles

Proto-neutron 
star



The second term makes the physics of a neutrino gas in a core-collapse supernova a 
very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, 
such as conserved quantities and interesting features in the neutrino energy 

spectra (spectral “swaps” or “splits”). 

Energy released in a core-collapse 
SN: DE ≈ 1053 ergs ≈ 1059 MeV

99% of this energy is carried away 
by neutrinos and antineutrinos!

~ 1058 Neutrinos!
This necessitates including the 

effects of nn interactions 
(“collective neutrino oscillations”)!
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neutrino-neutrino interactions



𝜕𝜌
𝜕𝑡 = −𝑖 𝐻, 𝜌 + 𝐶(𝜌)

H = neutrino mixing 
    + forward scattering of neutrinos off other background particles (MSW)                

+ forward scattering of neutrinos off each other

C = collisions 
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Neutrino flavor isospin Ĵ+ = ae
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These operators can be written 
in either mass or flavor basis
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Interacting with background electrons



Note	that

𝐽! =
1
2
𝑎"
#𝑎" − 𝑎$

#𝑎$
𝑁 = 𝑎"

#𝑎" + 𝑎$
#𝑎$ = 	constant

Hence	∑𝑃%	 ≡ 	Tr 𝜌𝐽% 	is	an	observable	giving	numbers	of	neutrinos
	of	each	Blavor

𝜌 =
1
2
1 +	 𝜎⃗ . 𝑃Note single neutrino density matrix



Neutrino-Neutrino Interactions
Smirnov, Fuller, Qian, Pantaleone, Sawyer,  
McKellar, Friedland, Lunardini, Raffelt, 
Duan, Balantekin, Volpe, Kajino, Pehlivan …

Neutrino-neutrino interactions lead to novel collective and emergent 
effects, such as conserved quantities and interesting features in the 

neutrino energy spectra (spectral “swaps” or “splits”). 
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This term makes the physics of a neutrino gas in a core-collapse 
supernova a genuine many-body problem
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This problem is “exactly solvable” in the single-angle approximation 

Introductory Material
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Note	that	this	Hamiltonian	commutes	with 𝐵 .@
!

𝐽! .	

Hence	Tr 𝜌𝐵 .@
!

𝐽! 	is	a	constant	of	motion.	

In	the	mass	basis	this	is	equal	to	 Tr 𝜌𝐽" .	
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Two of the adiabatic eigenstates of this equation are easy to find 
in the single-angle approximation:

To find the others will take a lot more work



Adiabatic evolution of an 
initial thermal distribution 
(T = 10 MeV) of electron 
neutrinos. 108 neutrinos 
distributed over 1200 
energy bins with solar 

neutrino parameters and 
normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino
arXiv:1805.11767

PRD98 (2018) 083002

initial

final

Away from the mean-field: 
Adiabatic solution of the exact 

many-body Hamiltonian for 
extremal states



Single-angle approximation Hamiltonian:
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Pehlivan, ABB, Kajino, & Yoshida
Phys. Rev. D 84, 065008 (2011) 

Bethe ansatz equations

µ =
GF

2V
1− cosΘ

BETHE ANSATZ



A system of N particles each of which can occupy k 
states (k = number of flavors)

Exact Solution Mean-field approximation

Entangled and 
unentangled states

Only unentangled states

Dimension of Hilbert 
space: kN Dimension of the 

diagonalizing space: kN

S = - Tr (r log r)von Neumann entropy

Pure State Mixed State

Density matrix r2 = r r2 ≠ r

Entropy S = 0 S ≠ 0



Pick one of the neutrinos and introduce the reduced density 
matrix for this neutrino (with label “b”)

!𝜌 = 𝜌! = $
",$,%,…

𝜈", 𝜈$ , 𝜈% ,''' 𝜌 𝜈", 𝜈$ , 𝜈% ,'''
Introductory Material
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Entanglement 
entropy



• Bethe ansatz method has numerical instabilities for larger values of N. However, 

it is very valuable since it leads to the identification of conserved quantities. 

     Patwardhan et. al., PRD 99, 123013 (2019); Cervia et al., PRD 100, 083001 (2019) 

• Runge Kutta method (RK4) 
      Patwardhan et. al., PRD 104, 123035 (2021), Siwach et. al. PRD 107, 023019 (2023)

• Tensor network techniques  
      Cervia et al., PRD 105, 123025 (2022)

• Noisy quantum computers 

     Siwach et. al., 2308.09123 [quant-ph]   

     

Techniques to solve the exact evolution



Cervia, Siwach, Patwardhan, Balantekin, Coppersmith, Johnson, arXiv:2202.01865

Computation times:
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Cervia, Patwardhan, Balantekin, 
Coppersmith, Johnson, 
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Time evolution for 12 neutrinos (initially six ne and six nx). D is the bond dimension. The 
largest possible value of D is 26=64.
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A.B. Balantekin University of Wisconsin-Madison Symmetries of the many-neutrino gas in supernovae

Adiabatic Solution: Each P(A) lie mostly on the 
plane defined by B and P with a small 

component perpendicular to that plane. 
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A.B. Balantekin University of Wisconsin-Madison Symmetries of the many-neutrino gas in supernovae

P($) = 	α$ℬ +	β$P +	γ$ ℬ×P
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Hence asymptotically Px and Py go to zero. Since P2 is one 
(uncorrelated neutrinos) (Pz)2 goes to one. 
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We find that the presence of spectral splits is a good proxy 
for deviations from the mean-field results

mean field many body
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observing the first 
mass eigenstate
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The impact of two different treatments of collective 
neutrino oscillations (with and without entanglement)
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Balantekin, Cervia, Patwardhan, 
Surman, Wang; 2311.02562 
[astro-ph.HE]

Considerations of collective effects unveiled a 
new kind of nucleosynthesis: ”The ni process”.



𝑄((𝑝) =
1
2
/
!,*+#

&

𝑎!
,(𝑝) 𝜆( !*𝑎*(𝑝)

𝐻 = 	/
-

𝐵 5 𝑄 𝑝 +	/
-,.

𝜇-. 𝑄(𝑝) 5 𝑄(𝑘)

𝐵 =
1
2𝐸

0,0,𝑚!
" − 𝑚"

", 0,0,0,0, − 𝑚#
" − 𝑚!

"

Entanglement in three-flavor collective oscillations

Pooja Siwach, Anna Suliga, A.B. Balantekin
Physical Review D 107 (2023) 2, 023019





𝜌 =
1
3
1 +	𝜆!𝑃!

𝑃" = 𝑃!𝑃! = 3	 and	 𝑃! = 𝑑!#$𝑃#𝑃$

𝑃!𝑃!	 ≤ 3	
𝑄 = 𝑑!#$𝑃!𝑃#𝑃$

Qutrits are more complicated than qubits

Density matrix for a single qutrit

Positive semi-
definite condition

Pure state only if

In the above equations dijk is the completely symmetric tensor of SU(3). 
Note the duality between SU(3) Casimir operators and invariants of the 

density matrix. 
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First try: Brute Force – simple trotterization for two neutrinos and two flavors
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Reduced number of  CNOT gates

Putting on a quantum computer

Even for only two neutrinos and 
after reducing the number of  
CNOT gates, the circuits remain 
too deep. We then adopt a hybrid 
approach of Bharti and Haug, PRA 
104, 042418 (2022).



𝐻 ==
!1'

2
𝛽!𝑈!

The hybrid approach of Bharti and Haug, PRA 104, 042418 (2022).

| ⟩𝜙(𝛼 𝑡 ) = ∑!1'2 𝛼! 𝑡 | ⟩𝜓!

𝜓! 𝜓# = 𝜀!#               𝛼3𝜀	𝛼 = 1	 𝐷!# = ∑$ 𝛽$ 𝜓! 𝑈$ 𝜓# 	 𝑖𝜀 45
4,
= 𝐷𝛼(𝑡)

Hamiltonian is a sum of unitaries

Ansatz for the state

| ⟩𝜓' = 𝑋&| ⟩00 ,    | ⟩𝜓" = 𝑋'| ⟩00 ,    | ⟩𝜓6 = 	𝑋&𝑋'| ⟩00 	Choose three basis states

e and D are calculated using a quantum computer, rest is done on a classical computer

P. Siwach, K. Harrison, and A.B. Balantekin, Phys. Rev. D 108 (2023) 8, 083039



• Calculations performed using the mean-field approximation have 
revealed a lot of interesting physics about collective behavior of 
neutrinos in astrophysical environments. Here we have explored 
possible scenarios where further interesting features can arise 
by going beyond this approximation.

• We found that the deviation of the adiabatic many-body results 
from the mean field results is largest for neutrinos with energies 
around the spectral split energies. In our single-angle calculations 
we observe a broadening of the spectral split region. This 
broadening does not appear in single-angle mean-field calculations 
and seems to be larger than that was observed in multi-angle 
mean-field calculations (or with BSM physics).  

• (From the QIS perspective) For simplicity originally two neutrino 
flavors were mapped onto qubits. But since neutrinos come in 
three flavors, neutrinos should be mapped onto qutrits. The 
description of qutrits is much more involved than that of qubits.

CONCLUSIONS



Thank you very much!


