# — The Pacific Ocean Neutrino Experiment — Matthias Danninger

- for the P-ONE Collaboration
  - 2024 03 07







## P-ONE







erc

INSTYTUT FIZYKI JĄDROWEJ IM. HENRYKA NIEWODNICZAŃSKIEGO POLSKIEJ AKADEMII NAUK

**European Research Council** 

Established by the European Commission







Arthur B. McDonald





German Research Foundation

DFG Deutsche Forschungsgemeinschaft

## — Our Motivation — ...lceCube's legacy...

\*

-



2024-03-07 | Matthias Danninger | SFU



1



P-ONE

## Neutrino astronomy — key to 20% of Universe

20% of the Universe is opaque to the EM spectrum non-thermal Universe powered by cosmic accelerators probed by gravity waves, neutrinos and cosmic rays

image from F. Halzen











 Since 2013 — Astrophysical neutrinos discovered



2023-04-19 Matthias Danninger | SFU

**P-ONE** 









 Since 2013 — Astrophysical neutrinos discovered



2023-04-19 Matthias Danninger | SFU

P-ONE

SIMON FRASER UNIVERSITY







5





# First multi-messenger observation of neutrinos and high energy gamma rays!

е

Ve

e

е

16-

https://icecube.wisc.edu/news/view/586









- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2020 Neutrino oscillation measurements at PeV scale!













#### Second neutrino source!







9



- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2020 Neutrino oscillation measurements at PeV scale!
- 2022 Second source







- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source: Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2020 Neutrino oscillation measurements at PeV scale!
- 2022 Second source







#### • 2023 — Galactic sources?















#### • 2023 — Galactic sources?



Matthias Danninger | SFU 2023-04-19

SIMON FRASER

UNIVERSITY

























E<sup>2</sup> dN<sub>v</sub>/dE<sub>v</sub> [GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>]

**P-ONE** 

Matthias Danninger | SFU 2023-12-15











Atmospheric



**P-ONE** 

Matthias Danninger | SFU 2023-12-15













P-ONE

2023-12-15 Matthias Danninger | SFU

#### SIMON FRASER **UNIVERSITY**

8











- Field of view for neutrino telescopes matter
- P-ONE has latest technology + new line concept
- With P-ONE we expect unprecedented performance & particle ID
- First Neutrino Telescope hosted by an existing large scale oceanographic infrastructure (ONC)
- Infrastructure can realistically support multikm3 detector







### We need more neutrinos: Expanding the Neutrino Net















#### OCEAN NETWORKS CANADA Discover the ocean. Understand the plan

Explorer Plate

**NEPTUNE Observatory** 

Clayoquot

Slope

250

Pacific **Plate** 

> Middle Valley 2400 m



Cascadia Basin 2660 m

Juan de Fuca Plate

Barkley Canyon 400-1000 m

- 2600m deep abyssal plain
- 2°C year-round
  - Low currents (0.1m/s)

➡ 840 km of underwater fibre optic cable

**Matthias Danninger** | SFU 2024-03-07

#### VENUS Observatory

VANCOUVER ISLAND



#### Cascadia Basin node



An Initiative of the University of Victoria



#### OCEAN NETWORKS CANADA Discover the ocean. Understand the plan

Explorer Plate

**NEPTUNE Observatory** 

Clayoquot

Slope

1250

Pacific Plate

> Middle Valley 2400 m



Cascadia Basin 2660 m

Juan de Fuca Plate

➡ 840 km of underwater fibre optic cable

2024-03-07 | Matthias Danninger | SFU

#### VENUS Observatory

VANCOUVER ISLAND





## P-ONE — Not just big — focus on precision





Early



Late





## P-ONE — Not just big — focus on precision





Early



Late





## P-ONE — Not just big — focus on precision



• Simplistic euclidean universe approx.

$$N(>f) \propto f^{-3/2}$$

• 5 times better sensitivity results in *more* than 10 times more sources **P-ONE** 



/ E R S I T Y











## P-ONE — project timeline



Pathfinder Phase 1 (2018–2023) **P-ONE** 

2024-03-07 Matthias Danninger | SFU

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

## P-ONE — project timeline

![](_page_25_Figure_1.jpeg)

Pathfinder Phase 1 (2018–2023) **P-ONE** Matthias Danninger | SFU 2024-03-07

Demonstrator (7-10 lines) Phase 2 (2023-2028)

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_8.jpeg)

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

![](_page_26_Figure_0.jpeg)

Pathfinder Phase 1 (2018–2023) **P-ONE** 2024-03-07 Matthias Danninger | SFU

Demonstrator (7-10 lines) Phase 2 (2023-2028)

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

![](_page_27_Figure_0.jpeg)

Pathfinder Phase 1 (2018–2023) P-ONE Matthias Danninger | SFU 2024-03-07

Demonstrator (7-10 lines) Phase 2 (2023-2028)

![](_page_27_Picture_4.jpeg)

**P-ONE** Phase 3 (2028->)

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

## The Roadmap to P-ONE: Phase 1, Pathfinders

- <u>5-years operation</u> of STRAW (98% uptime)
- Attenuation Length ~30m @ 450nm
- K40 background quantified
- Bioluminescence, sedimentation and biofouling as main challenges identified.

![](_page_28_Figure_5.jpeg)

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

![](_page_28_Picture_9.jpeg)

![](_page_29_Picture_1.jpeg)

2024-03-07 | Matthias Danninger | SFU

\*

— P-ONE detector line concept —

-

1

÷.,

巖

![](_page_29_Picture_5.jpeg)

### P-ONE detector line concept

![](_page_30_Picture_8.jpeg)

![](_page_30_Picture_11.jpeg)

![](_page_30_Figure_12.jpeg)

![](_page_30_Picture_13.jpeg)

![](_page_30_Picture_14.jpeg)

![](_page_30_Picture_15.jpeg)

## P-ONE optical module

#### PoS (ICRC2023) 1219

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

2024-03-07 | Matthias Danninger | SFU

- Optical module with 16 PMTs
- PMT: Hamamatsu R14374-10
- Modular, spring loaded mounting structure
- Optical gel pads used to increase light yield

#### Few DAQ highlights:

![](_page_31_Picture_12.jpeg)

- 16 channel ADC (full waveform digitization)
- 210 MHz sampling rate reconstruction of full waveform
- Online buffering capability (module local ~ 4GB)

![](_page_31_Picture_17.jpeg)

![](_page_31_Picture_18.jpeg)

![](_page_32_Figure_1.jpeg)

- Depth dependent optical water properties
- Refractive index, scattering & absorption length
- Refractive index crucial for track reconstruction
- Depth-dependent calibration required (!)

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

![](_page_32_Figure_8.jpeg)

![](_page_33_Figure_1.jpeg)

- Light pulses to calibrate column properties
- Emit + receive in neighbouring modules
- Can use multiple wavelengths

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

![](_page_33_Picture_8.jpeg)

![](_page_34_Figure_1.jpeg)

- Light pulses to calibrate column properties
- Emit + receive in neighbouring modules
- Can use multiple wavelengths
- Cross-correlation with up/down symmetries
- Sedimentation + biofouling with up/down ratios

![](_page_34_Figure_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

![](_page_35_Figure_1.jpeg)

2024-03-07 Matthias Danninger | SFU

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_5.jpeg)

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_36_Figure_1.jpeg)

SIMON FRASER **UNIVERSITY** 

and sedimentation

![](_page_36_Picture_8.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_36_Picture_10.jpeg)

![](_page_36_Picture_11.jpeg)

![](_page_36_Picture_12.jpeg)

![](_page_36_Picture_13.jpeg)

![](_page_36_Picture_14.jpeg)

## Optical in-situ Calibration 2 —

![](_page_37_Figure_1.jpeg)

**P-ONE** 

![](_page_37_Figure_7.jpeg)

UNIVERSITY

![](_page_37_Picture_9.jpeg)

Detected hits per pulse

![](_page_37_Picture_11.jpeg)

![](_page_37_Picture_12.jpeg)

### Acoustic position Calibration

![](_page_38_Figure_1.jpeg)

![](_page_38_Picture_7.jpeg)

## Another muon pointing calibration system

![](_page_39_Figure_1.jpeg)

track muons using a scintillator plate in a hemisphere, read out by a SiPM, to compare their reconstruction

![](_page_39_Figure_4.jpeg)

![](_page_39_Picture_6.jpeg)

![](_page_39_Figure_7.jpeg)

![](_page_39_Figure_8.jpeg)

![](_page_39_Picture_9.jpeg)

![](_page_39_Picture_10.jpeg)

![](_page_39_Picture_11.jpeg)

![](_page_39_Picture_12.jpeg)

### P-ONE Collaboration on the Map

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Picture_0.jpeg)

## Thank you

- <u>Phase 2</u> of the P-ONE project has started.
- Exciting 2024 and 2025 are ahead for the P-ONE project.
- We are looking forward to deploy and test our new line concept!
- Stay tuned for updates....

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

#### P-ONE Collaboration meeting Philadelphia Nov. 2023

![](_page_46_Picture_13.jpeg)

![](_page_46_Picture_14.jpeg)

erc

**INSTYTUT FIZYKI JĄDROWEJ** IM. HENRYKA NIEWODNICZAŃSKIEGO POLSKIEJ AKADEMII NAUK

**European Research Council** 

Established by the European Commission

![](_page_46_Picture_16.jpeg)

SFB 1258

Dark Matter Messengers

![](_page_46_Picture_18.jpeg)

Arthur B. McDonald

![](_page_46_Picture_19.jpeg)

![](_page_46_Picture_20.jpeg)

![](_page_46_Picture_21.jpeg)

![](_page_46_Picture_22.jpeg)

DFG Deutsche Forschungsgemeinschaft

![](_page_46_Picture_24.jpeg)