Origins of (neutrino-ish) Dark Matter in the Matter Power Spectrum

Yue Zhang

Carleton University

Neutrinos in Cosmology and Astrophysics TRIUMF, March 2024

This talk is about

Cosmological observations

Fundamental physics

Linear Matter Power Spectrum

- Dark matter cold and collisionless throughout entire history.
- Log (linear) growth during radiation (matter) dominated era.
- Peak: matter-radiation equality.
- Linearly evolve primordial fluctuations till today.

Dark Matter Model Predictions

Dark Matter Model Predictions

Collisionless Damping

damping due to free streaming: k ~ aH(T_{NR})

k_{BBN}

Lighter dark matter produced ultrarelativistically can smooth out structures

Collisionless Damping

Warm Dark Matter

Primordial phase space distribution (while DM still relativistic)

$$f = \frac{1}{e^{E/T_{\text{WDM}}} + 1}$$

To comprise 100% of dark matter we need

$$T_{\rm WDM} \simeq 0.086 T_{\gamma} \left(\frac{6.5 \, \rm keV}{m}\right)^{1/3}$$

Reference mass 6.5 keV is the lower bound on WDM set by DES. Substantially cooler than CMB photons.

DES limit: ultra-faint MW dwarfs

Mapping primordial PSD to P(k), and to subhalo mass function

Nadler et al, DES collaboration (PRL 2021)

Warmer than WDM

Sterile neutrino dark matter $v_4 = v_s \cos \theta + v_a \sin \theta$ produced via neutrino oscillation in early universe.

Dodelson, Widrow (PRL 1994)

Collisional Oscillation

Warmer than WDM $T_{\nu_4} \sim T_{\nu} \simeq 0.7 T_{\gamma}$ $C \ll 1$

DES result implies m > 50 keV for DW produced sterile neutrino DM.

DW Mechanism is Firmly Excluded

Shi-Fuller also Excluded by DES

Shi-Fuller: a lepton asymmetry triggers MSW resonant production.

She, Fuller (PRL 1999)

Neutrino Self-interaction Can Rescue

$$\Omega_4 \sim \int \frac{\Gamma_{\text{total}}}{H} \sin^2 \theta_{\text{eff}}$$

 $(\Gamma_{total} = \Gamma_{weak} + novel interactions)$

> more oscillation baselines not more X-rays

Neutrino Self-interaction Can Rescue

 $(\Gamma_{total} = \Gamma_{weak} + novel interactions)$

more oscillation baselines not more X-rays

Universe@ T ~ 100 MeV

Neutrino Self-interaction Can Rescue

Universe@ T ~ 100 MeV

Wide Open Parameter Space

Wide Open Parameter Space

Other probes: talks by Douglas, Kevin

Narrowing Down Relic Target

Include small scale structure limit from DES \rightarrow m₄ > 37.4 keV

An, Gluscevic, Nadler, YZ (APJL 2023)

Narrowing Down Relic Target

Include small scale structure limit from DES \rightarrow m₄ > 37.4 keV

An, Gluscevic, Nadler, YZ (APJL 2023)

How about Even Larger Scales?

Making all the dark matter hot: clearly not acceptable

How about Even Larger Scales?

Feasible option: make a *fraction* of dark matter hot

Why Relevant? — Opportunities!

Ferraro, Sailer, Slosar, White (Snowmass white paper 2203.07506)

Why Take this Seriously?

Any sound reasons and predictive models.

Consider a thermal history for the origin of warm dark matter (X).

IF X freezes out relativistically, same population as SM neutrinos $(T_X = T_v)$, relic density would be overproduced

$$\Omega_X h^2 = 650 \times 0.12 \left(\frac{m_X}{6.5 \,\mathrm{keV}} \right)$$

problem needs to be fixed

Entropy Production (dilution)

Reduce the dark matter relic abundance by "heating up" photons in the early universe — more expansions to cool down to 2.7 K.

$$\Omega_X h^2 = 650 \times 0.12 \left(\frac{m_X}{6.5 \,\text{keV}} \right) \times \frac{1}{S}$$

Textbook example of dilution via temperature dependence in g_*

$$\frac{1}{S} = \left(\frac{10.75}{g_*(T_{\rm dec})}\right)$$

Hard to imagine an appealing BSM with so many new particles.

Entropy from Late Decay

Introducing a diluting particle *Y*, long-lived, temporarily matter domination before decaying away, into SM particles.

Scherrer, Turner (PRD 1985)

Dilution to Warm Dark Matter

Assuming both *X*, *Y* freeze out relativistically, similar initial abundance:

$$\Omega_X h^2 \simeq 0.12 \left(\frac{10^6 m_X}{m_Y} \right) \sqrt{\frac{1 \sec}{\tau_Y}}$$

Dilutor needs to be at least a million times heavier than DM.

After dilution, $T_X = T_{WDM}$.

Dilution to Warm Dark Matter

Assuming both *X*, *Y* freeze out relativistically, similar initial abundance:

$$\Omega_X h^2 \simeq 0.12 \left(\frac{10^6 m_X}{m_Y} \right) \sqrt{\frac{1 \sec}{\tau_Y}}$$

Dilutor needs to be at least a million times heavier than DM.

After dilution, $T_X = T_{WDM}$.

contours of $\log_{10}(\tau_Y/\text{sec})$ 1000 500 100 m_X (keV) 50 6 10 5 10⁷ **10**¹⁰ 10 10⁴ **10**¹³ **10¹⁶** m_Y (GeV)

Gauge Extensions to SM

Left-right symmetric model: SU(3)_cxSU(2)_LxSU(2)_RxU(1)_{B-L}

Or Pati-Salam model: SU(2)_LxSU(2)_RxSU(4)_c

Originally written down for explaining neutrino mass (Seesaw). Introduce three right-handed neutrinos for gauge anomaly cancellation.

Dark matter $X = N_1$, dilutor $Y = N_2$.

Bezrukov, Hettmansperger, Lindner (PRD 2010)

Dilutor Decay Can Produce DM

Against the goal of dilution, but inevitable in the models with RH current interactions. In analogy to weak decay of tau lepton,

If this is the entire story, $Br_{N_2 \rightarrow N_1} \ge 10\%$

Is it consistent with the observed matter power spectrum?

Phase Space Distribution

Secondary component of DM from dilutor much more energetic.

Something Remarkable

	Energy of secondary DM (N ₁)	Temperature of photon background
Immediately after dilutor (N ₂) decay	~ <i>M</i> _{<i>N</i>₂}	T _{RH}
Secondary DM turns non-relativistic	$\sim M_{N_1}$	$T_{\rm NR} \sim T_{\rm RH} \frac{M_{N_1}}{M_{N_2}}$

Another look at relic density $\Omega h^2 \simeq 0.12 \left(\frac{10^6 M_{N_1}}{M_{N_2}} \right) \left(\frac{T_{\text{RH}}}{1 \,\text{MeV}} \right)$

Something Remarkable

	Energy of secondary DM (N ₁)	Temperature of photon background
Immediately after dilutor (N ₂) decay	~ <i>M</i> _{<i>N</i>₂}	T _{RH}
Secondary DM turns non-relativistic	$\sim M_{N_1}$	$T_{\rm NR} \sim T_{\rm RH} \frac{M_{N_1}}{M_{N_2}}$

Another look at relic density
$$\Omega h^2 \simeq 0.12 \left(\frac{10^6 M_{N_1}}{M_{N_2}} \right) \left(\frac{T_{\text{RH}}}{1 \,\text{MeV}} \right)$$

→ $T_{\rm NR} \sim 0.3 \, {\rm eV}$ — robust prediction up to a $g_*(T_{\rm RH})^{\frac{1}{12}}$ dependence.

Something Remarkable

	Energy of secondary DM (N ₁)	Temperature of photon background
Immediately after dilutor (N ₂) decay	~ <i>M</i> _{<i>N</i>₂}	T _{RH}
Secondary DM turns non-relativistic	$\sim M_{N_1}$	$T_{\rm NR} \sim T_{\rm RH} \frac{M_{N_1}}{M_{N_2}}$

Another look at relic density $\Omega h^2 \simeq 0.12 \left(\frac{10^6 M_{N_1}}{M_{N_2}} \right) \left(\frac{T_{\text{RH}}}{1 \,\text{MeV}} \right)$

→ $T_{\rm NR} \sim 0.3 \, {\rm eV}$ — robust prediction up to a $g_*(T_{\rm RH})^{\frac{1}{12}}$ dependence.

Coincidence: around matter-radiation equality, $T \sim 0.3$ eV.

Damping Effects in P(k)

Large Scale Structure Constraint (SDSS)

Implication for Left-Right Model

To evade the LSS constraint, resort to a N-v mixing or W-W_R gauge boson mixing \rightarrow lower limit on mass scale M_{WR} > PeV.

For dilution to work, N_2 -v mixing is very small and irrelevant for seesaw mechanism. N_3 alone cannot account for both solar and atmospheric mass differences, additional source needed.

Nemevsek, YZ, 2312.00129, (PRD to appear)

Generalization

Robust upper limit (SDSS)

$$Br_{dilutor \rightarrow DM} \lesssim 1\%$$

Sub-percent branching ratio will be scrutinized by upcoming experiments.

Other models that resort to dilution: gravitino DM, strongly coupled dark sectors, twin-Higgs, primordial black holes ...

Summary

A lot to learn from cosmological data on origins of dark matter. Complementary to terrestrial searches. Many opportunities for years to come.

Thanks!