

Centre Canadien de Recherche en Physique des Astroparticules nur B McDonald Canadian Astroparticle Physics Research Institute

The flavour of highenergy neutrinos **Aaron Vincent**

Neutrinos in Cosmology and Astrophysics | TRIUMF | Mar 8 2024

Featuring

Carlos Argüelles Harvard

Mauricio Bustamante Niels Bohr Institute

Ali Kheirandish Las Vegas

Shirley Li UC Irvine

Ningqiang Song CN Yang ITP

Damiano Fiorillo NBI

High-energy neutrinos

Neutrinos can tell us about "standard model" physics:

- Nature of these accelerators
- Oscillation, interaction with intergalactic medium
- Detection: high-energy neutrino-nucleus cross sections

New Physics?

Current observations: IceCube (south pole) Effective volume $\sim 1 \text{ km}^3$

Flavour: event morphology

Isolated energy deposition (cascade) with no track

Up-going track

Charged-current v $_{\tau}$

(simulation)

Double cascade

Images: <u>icecube.wisc.edů</u>

Aside: new physics can give new morphologies Microscopic black hole signatures: Mack, Song, ACV 1912.06656

Multitrack (hard to see)

n-bang (only 0.2% of black hole events)

Kebab: (About 3% of cases)

Double black hole bang: (very rare!!)

Flavour composition in astrophysical sources

Neutron source $n \to p + e^- + \bar{\nu}_e$

 $(\alpha_e : \alpha_\mu : \alpha_\tau)$

Different scenarios: different production environments

Flavour can be distinguished statistically in neutrino detectors: different charged-current interactions lead to different event morphologies (there is some degeneracy)

Can we learn the flavour composition at the source to understand the production of astrophysical neutrinos?

(1:0:0)

Oscillation

Flavour eigenstates ($\alpha = e, \mu, \tau$) are not eigenstates of the Hamiltonian (i = 1, 2, 3)

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle,$$

Flavour basis

PMNS mass basis mixing matrix

Distances are **large and uncorrelated** -> mixing **averages out:**

$$P_{\alpha \to \beta} = \sum_{i=1}^{J} |U_{\alpha i}|^2 |U_{\beta i}|^2$$
$$f_{\beta, \bigoplus} = \sum_{i=1}^{J} P_{\alpha \beta} f_{\alpha, S}$$

 $\alpha = e, \mu, \tau$

flavour composition at Earth flavour composition at source

$$U = egin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\mathrm{CP}}} \ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\mathrm{CP}}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\mathrm{CP}}} & c_{13}s_{23} \ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\mathrm{CP}}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\mathrm{CP}}} & c_{13}c_{23} \ c_{ij} \equiv \cos\theta_{ij} \ s_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \cos\theta_{ij} \ c_{ij} \equiv \sin\theta_{ij} \ c_{ij} \equiv \ c_{$$

Flavour composition at Earth

NuFit 5.0 global fit

Parameter	Normal ordering	Inverted ordering
$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.304\substack{+0.013\\-0.012}$
$\sin^2 \theta_{23}$	$0.573\substack{+0.016 \\ -0.020}$	$0.575\substack{+0.016\\-0.019}$
$\sin^2 \theta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02238\substack{+0.00063\\-0.00062}$
$\delta_{ m CP}$ (°)	197^{+27}_{-24}	282^{+26}_{-30}

 θ_{12} ("solar angle"): Solar, reactor experiments θ_{23} ("atmospheric angle") Atmospheric, long-baseline θ_{13} Reactor experiments

 δ_{CP} Long-baseline experiments

What does the future say about this?

AIR SHOWER:

3 – 10 KM LENGTH 200 M DIAMETER

DECAY •

RANGE: 50 M - 5 KM

~100 M⁻ SEPARATION

- WATER CHERENKOV DETECTOR ARRAY

~M³ EACH

DEEP VALLEY

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

ROCK

> 4 KM SHIELDING FROM BACKGROUND MUONS

CHARGED-CURRENT INTERACTION

Statics: need more Cherenkov telescopes!

	Location	Exposure (km ³)
	South.pole.(HE upgrade of IceCube)	~6-9
	Mediterranean Sea (successor to ANTARES)	~2-3
	Lake Baikal	1.5
	Cascadia Basin (Pacific Ocean)	π
,	Peru	~10 (very high E, tau only)

Statistics

- measurement. 0.52% uncertainty on $\sin^2 \theta_{12}$
- experiment. θ_{23} & δ_{CP}

Colours: allowed region assuming a single source composition

Flavour composition at the source?

Flavour composition at the source

Dominant production mechanism can be pinned down to within 20% using neutrino flavour alone.

Assuming no neutron decay

New physics: neutrino decay

Neutrino decay

Invisible decay: all but one mass eigenstate decays to invisible species.

$$N_{\nu} = N(z_0) \exp\left\{-\frac{m_{\nu}}{\tau E_{\nu}} \int_0^{z_0} \frac{dz}{(1+z)^2 H_0 \sqrt{\Omega(z)}}\right\}$$

Must be integrated over distribution of cosmic sources

See Abdullah & Denton 2005.07200 for a complete treatment of visible decay

HEULIHO MELIHE AL IESL

Sensitivity to single mass eigenstates

Colour: full decay Grey: partial decay

Full decay of m_2 and m_3 almost excluded now

Cosmology bounds didn't compute phase space correctly, see 2203.09075 for weaker limits

But these don't include energy dependence

The flavour composition can depend on energy

- Muon-damping: we see the neutrinos from the pion at high-energy, and from the muon at lower energy
- Neutrino decay, Lorentz-invariance violation can give an Edependent step
- Different sources could dominate at different energy ranges
- We test three generic **benchmark scenarios**:
 - Single power law with a flavour transition
 - Broken power law, transition at the break
 - Step, transition at the step

Parameter	\mathbf{Symbol}	Units	Use	ed in fl	ux mode	l True value	Prior	
			PL	BPL	Step	(in proj.)		
	S	pectrum shape parameters (Sec	ction	IID)				
All-flavor flux normalization at 100 TeV, common to LE and HE	$\Phi_{ u,0}$	$10^{-18} { m GeV^{-1} \ cm^{-2} \ s^{-1} \ sr^{-1}}$	\checkmark	\checkmark		6.7	Uniform $\in [0, 10]$	
LE all-flavor flux normalization at 100 ${\rm TeV}$	$\Phi^{ m LE}_{ u,0}$	$10^{-18} { m GeV^{-1} \ cm^{-2} \ s^{-1} \ sr^{-1}}$			\checkmark	6.7	Uniform $\in [0, 10]$	
HE all-flavor flux normalization at $100~{\rm TeV}$	$\Phi_{ u,0}^{ m HE}$	$10^{-18} { m GeV^{-1} \ cm^{-2} \ s^{-1} \ sr^{-1}}$			\checkmark	(6.7/3)	Uniform $\in [0, 10]$	
Energy of flavor transition, LE to HE	E_{trans}	${ m TeV}$	\checkmark	\checkmark	\checkmark	200 or 10^3	$\begin{array}{l} \text{Log}_{10}\text{-uniform} \\ \in [60, 10^4] \end{array}$	Ven
Spectral index, common to LE and HE	γ		\checkmark		\checkmark	2.5	Uniform $\in [1, 4]$	number
LE spectral index	$\gamma^{ ext{LE}}$			\checkmark		3.0	Uniform $\in [1, 4]$.ser
HE spectral index	$\gamma^{ ext{HE}}$			\checkmark		2.0	Uniform $\in [1, 4]$	
Additional para	neters use	d when measuring the flavor co	ompo	osition	at Earth	(Section I)	/ A)	
LE angle of flavor composition at Earth	$\sin^4 heta_\oplus^{ m LE}$		\checkmark	\checkmark	\checkmark	0.45	Uniform $\in [0, 1]$	Car and
LE angle of flavor composition at Earth	$\cos 2\psi_\oplus^{ m LE}$		\checkmark	\checkmark	\checkmark	-0.01	Uniform $\in [-1, 1]$	A Star
HE angle of flavor composition at Earth	$\sin^4 heta_\oplus^{ m HE}$		\checkmark	\checkmark	\checkmark	0.39	Uniform $\in [0, 1]$	
HE angle of flavor composition at Earth	$\cos 2\psi_\oplus^{ m HE}$		\checkmark	\checkmark	\checkmark	-0.27	Uniform $\in [-1, 1]$	
Additional parame	eters used	when inferring the flavor comp	ositi	on at	the sourc	es (Section	IVB)	
LE electron flavor fraction	${f}_{e,\oplus}^{ ext{LE}}$		\checkmark	\checkmark	\checkmark	0.33	Uniform $\in [0, 1]$	Much statis
HE electron flavor fraction	${f}_{e,\oplus}^{ ext{HE}}$		\checkmark	\checkmark	\checkmark	0.23	Uniform $\in [0, 1]$	Much
Solar mixing angle	$\sin^2 \theta_{\rm rel}$./	.(0.304	$\mathrm{Present}^{\mathbf{b}}: \ 0.304 \pm 0.012$	
Solar mixing angle	$\sin \theta_{12}$		v	v	v	0.304	Proj. ^c : Normal, $\sigma = 0.002$	
Atmospheric	$\sin^2 \theta$		1	(0.450	$Present^{??}: 0.450^{+0.016}_{-0.019}$	
Atmospheric	σ_{23}		v	v	v	0.450	Proj. ^{??} : Normal, $\sigma = 0.004$	
Decetor missing ongle	$a^{i} a^{2} a$		/	/	/	0.204	Present ^{??} : 0.02246 ± 0.00062	
Reactor mixing angle	$\sin \theta_{13}$		v	v	v	0.304	Proj. ^{??} : Normal, $\sigma = 0.00062$	
	2	0	/	/	/	000	$Present^{??}: 230^{+25}_{-36}$	
CP-violation phase	o_{CP}	-	V	V	V	230	Proj. ^{??} : Normal, $\sigma = 6.687$	

Liu, Fiorillo, Argüelles, Bustamante, Song, ACV 2304.06068

Flavor Transition Measurements

Future combined exposure: IceCube/IceCube-Gen2+KM3NeT+Baikal-GVD +P-ONE+TAMBO+TRIDENT

The HE flavor composition can be marginally distinguished from the LE composition at 1σ level by 2040

Qinrui Liu

27

Bayes factor

avor sition	$\begin{bmatrix} \mathcal{B}_2 & \text{Evidence from} \\ \text{flavor transition only} \end{bmatrix}$
E 7.5 yr	Present: IC HESE 7.5 yr
= 1 PeV	- Projected: $E_{\text{trans}} = 1 \text{ PeV}$
$= 200 \mathrm{TeV}$	Projected: $E_{\text{trans}} = 200 \text{ TeV}$

 $Z_{\rm transition}$

 $Z_{notransition}$

From Flavour + spectrum transition

From Flavour transition only

Liu, Fiorillo, Argüelles, Bustamante, Song, ACV 2304.06068

Comparison with the General Approach

Flavor measurements must use flexible descriptions of the neutrino spectrum to avoid reporting inaccurate flavor composition measurements.

If power law spectrum + no flavor transition is fitted

If the fitting assumption assumes the correct spectrum but without the flavor transition

> Assuming there is a flavor transition, if the measurement models that there is no flavor transition, more constrained contours can be obtained but no accurate detail is told.

Distinguishing ν vs $\bar{\nu}$?

- At high energies, neutrino/antineutrino separation is almost impossible
- Exception: the Glashow resonance. At $E_{CM} = M_W$, or $E_{\nu} = 6.3$ PeV, can produce onshell W for $\bar{\nu}_e$ only.

q

 \overline{q}

(Aside: India-based Neutrino Observatory proposal)

Currently stalled due to ecological concerns (blasting, excavation, ...)

50,000 tons magnetized iron leaves

Resistive plate chambers

What does ν vs $\bar{\nu}$ do for you?

 $p + p \rightarrow n_{\pi} \left[\pi^0 + \pi^+ + \pi^- \right]$

Production	Source flavor ratio	Earth flavor ratio $\nu + \bar{\nu}$	Earth flavor ratio	f
pp	$\{1,1\}:\{2,2\}:\{0,0\}$	0.33:0.34:0.33	$\{0.17, 0.17\}: \{0.17, 0.17\}: \{0.16, 0.16\}$	0.
$p\gamma$	$\{1,0\}:\{1,1\}:\{0,0\}$	0.33:0.34:0.33	$\{0.26, 0.08\}: \{0.21, 0.13\}: \{0.20, 0.13\}$	0.

Are neutrinos coming from pp or py collisions? These give different π^+/π^- ratios $\{\nu_e, \bar{\nu}_e\} : \{\nu_\mu, \bar{\nu}_\mu\} : \{\nu_\tau, \bar{\nu}_\tau\}$

$$p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n$$

Liu, Song, ACV 2304.06068/PRD

Event-Wise Identification

The case where Glashow resonant events can be identified on an event-by-event basis in the [4,10] PeV deposited energy window. Only consider $\bar{\nu}_{\rho}$ fraction.

$W^- \rightarrow \text{hadrons}$ **BR ~67** %

escaping muons, the only irreducible background is from NCDIS events

$$W^- \to e^- \bar{\nu}_e / \tau^- \bar{\nu}_\tau ~~ \mathrm{BR~~11~\%}$$

× Undistinguishable to a DIS cascade

$$W^-
ightarrow \mu^- \bar{\nu}_\mu$$
 BR ~11 %

track without the initial cascade comparing to ν_{μ} CCDIS

3-flavor degenerate scenarios can be distinguished at $\gtrsim 2\sigma$ w/ the soft spectrum assumption and $\sim 5\sigma$ w/ the hard spectrum assumption by 2040

Qinrui Liu

New Physics? Dark matter decay to neutrinos

- High mass (> PeV) decay to neutrinos produces an additional flux from electroweak corrections
- The ν or $\bar{\nu}$ flux in the glashow window is different for asymmetric decay to $\nu\nu$ vs $\bar{\nu}\bar{\nu}$

Summary

- Our understanding of the high-energy neutrino sky will become 1-2 orders of magnitude more precise over the coming two decades
- Neutrino telescopes cover at least 14 orders of magnitude in energy & can say all sorts of things about the dark sector & new physics
 - neutrino decay
 - Dark matter
 - More!
- We can go beyond 3-flavours and break the neutrino-antineutrino degeneracy, and thus the *pp-pγ* degeneracy, by looking at the glashow resonance. This also allows new interesting probes of new physics.