Neutrinos as standard & nonstandard dark radiation & dark matter

TRIUMF Neutrinos in Cosmology and Astrophysics

Kev Abazajian University of California, Irvine

March 8, 2024

nonstandard dark matter & dark radiation

standard dark matter & dark radiation

 $\sum m_{\nu} N_{\nu}$

The Cosmological Neutrino

The second most abundant particle in the Universe* From thermal physics:

$$n_{\gamma} = \frac{\zeta(3)}{\pi^2} g T^3 \approx 411 \,\mathrm{cm}^{-3}$$
$$n_{\nu} = N_{\nu} \times \left(\frac{3}{11}\right) n_{\gamma} \approx 340 \,\mathrm{cm}^{-3}$$

*depends on dark matter particle mass...

standard dark matter

Primordial Clustering: Cosmic Microwave Background gives a <u>Precision</u> Determination <u>at Large Scales</u>

$$P(k) = Ak^n$$

Planck Collaboration 2018:

 $\ln(10^{10}A_s) = 3.047 \pm 0.014 \qquad (0.46\%)$ $n = 0.9665 \pm 0.0038 \qquad (0.39\%)$

The Cosmological Matter Power Spectrum

Perturbations enter horizon:

Measuring Large Scale Structure $P(k) \& \sum_{i=1}^{N} N_{i}$

Measuring Large Scale Structure P(k) & $\sum m_{1}$

Observations' Sensitivity to LSS *P*(*k*,*z*)

Abazajian et al. arXiv:2203.07377

Current Σm_{ν} Limits

Neutrino mass is degenerate with other cosmological parameters (Ω_m especially), so all cosmological data useful in improving constraints: CMB + CMB Lensing (Planck 2018) + Type Ia SNe (Pantheon) + BAO + RSD (SDSS DR12+DR16) Neutrino ther cosmological parameters cosmological parameters $\Sigma m_{\nu} < 90 \text{ meV} (95\% \text{ CL})$ Di Valentino, Gariazzo & Mena, arXiv:2106.15267

Employing the most robust data sets, statistical validations, theory accuracy CMB (Planck 2018) + Type Ia SNe (Pantheon) + BAO + RSD (SDSS DR16) García-Escudero & Abazajian, in prep.

NO preferred over IO at 1.80 σ m_{ν} = 0 preferred over NO at 1.83 σ

Estimating Upcoming Cosmological Neutrino Mass Sensitivities

$$\frac{\Delta P(k)}{P(k)} \approx 1\% \approx -8 \frac{\Omega_{\nu}}{\Omega_m}$$

Hu, Eisenstein & Tegmark 1998

 $\implies \sigma \left(\Sigma m_{\nu} \right) \lesssim \left(1\%/8 \right) \times \Omega_m \left(93h^2 \text{ eV} \right)$ $\implies \sigma \left(\Sigma m_{\nu} \right) \lesssim 20 \text{ meV}$

 $\Omega_{\nu} \approx \frac{\sum m_{\nu_i}}{93 \ h^2 \ \mathrm{eV}}$

Kaplinghat et al PRL 2003 (CMB WL) Wang et al PRL 2005 (WL Clusters) De Bernardis et al. 2009 (Opt. WL) Joudaki & Kaplinghat 2011 (LSST) Basse et al. 2013 (Euclid) Wu et al. 2014 (CMB-S4 + DESI)

Sensitivity Forecasts for Neutrino Mass with Standard Model Extension Dependence

Cosmological Matter Power Spectrum & CMB Measures of N_{eff}

For Large Scale Structure:

Perturbations enter horizon at M/R equality

N_{eff} Effects on Matter Clustering

N_{eff} Effects on CMB

Σm_{ν} and N_{ν} (N_{eff}) Forecast

C. Chang et al., arXiv:2203.07638 [Snowmass]

Tensions! & New Physics?

"standard" dark matter

Planck 2018 Strongly Prefers $\Sigma m_{\nu} = 0 \ (\Sigma m_{\nu} \stackrel{?}{\leq} 0)$

Tension Data Sets May Prefer Large Σm_{ν} or N_{eff}

• σ_8 Tension:

Planck 2018 + BOSS DR12 + KIDS-1000 selfcalibration (Sgier et al. arXiv:2110.03815):

$$\Sigma m_{\nu} = 0.51^{+0.21}_{-0.24} \text{ eV}$$

• *H*⁰ Tension:

Planck 2018 + BOSS DR16 + Pantheon + 2021 SH0eS *H*⁰ (Garcia Escudero+ arXiv: 2208.14435):

$$N_{\rm eff} = 3.48 \pm 0.12$$

Neff: Not just Neutrinos, Light Relics

C. Chang et al., arXiv:2203.07638 [Snowmass]

nonstandard dark matter

Sterile Neutrino Dark Matter: Shi-Fuller Mechanism Excluded

Abazajian+ arXiv:2203.07377

Sterile Neutrino Dark Matter: NSI Assisted Production

Vogel+ in prep., Kelly+ arXiv:2005.03681, de Gouvêa+ arXiv:1910.04901

nonstandard dark matter

Simulation Resolution to Match Ly- α Observations

Simulation Resolution to Match Ly- α Observations

Strong Lensing Tests of WDM: Quadruply-Lensed Systems

Lensing substructure constraint: $m_{th} > 5.3 \text{ keV}$ (Gilman+ 2019) Studied in a wide range of sterile neutrino DM models (Zelko+ '22) *JWST Cycle 1 Proposal* (Ryan Keeley+ in prep.): $m_{th} > 10 \text{ keV}$

nonstandard cosmological thermal history

$T_{\rm RH} \gtrsim 1.8 \, { m MeV}$

Hasegawa+ 1908.10189, 2003.13302

Low Reheating Temperature Universes

Jelmini, Palomares-Ruiz & Pascoli astro-ph/0403323 Abazajian & García-Escudero 2309.11492

Low Reheating Temperature Universes with *decaying* v_s

Abazajian & García-Escudero 2309.11492

Low Reheating Temperature Universes with decaying v_s

Cosmology & Neutrinos:

• Cake: $\Sigma m_{\nu} \& N_{eff}: 2-3\sigma + \text{measurements of}$ $\Sigma m_{\nu} = 58 \text{ meV and } N_{eff} = 3.044$ in ~10 years

Icing: Surprises from tensions, novel early universe scenarios & dark matter models