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r Define Objective:

» Traditional decay-scheme generation
» A novel approach using graph theory representation (G.Demand & P. E. Garrett,
University of Guelph) <

* Reformulating the Problem: -
» Generating matrix representation

» Numerical optimization ” !

« Reformulating the Solution:
» Machine learning investigation

» Quantum Algorithms | J
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Analysis is very time consuming! E
§ vrﬁ+L-
JF=5/2" ' _ b
2234 keV : :

J =3/2*

1248 keV

J=1/2" ! Y ! Y

O keV (g.s.) 6 *Dashed levels/transitions are imaginary.
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o All statistics for n total v transitions as measured by spectrometer

e The intensity of the i*" y-ray transition is stored as S; in vector S

10° = 31C| B-delayed y-ray singles spectrum collected
: ;ﬁ\ using the Segmented Germanium Array (SeGA)
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Tamas Budner, 3'Cl B-Delayed Proton Decay and Classical Nova Nucleosynthesis, PhD Thesis, MSU, 2022



UNIVERSITY
»GUELPH

e All gamma events detected in coincidence with other y-rays

e The number of v; —y; coincidences is stored in each element C; ; within the reduced coincidence matrix

C

e No temporal information; symmetry C; ; = C; ;

v energy [keV]
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Decay schemes can be represented as graphs:

e FEach level within the decay scheme corresponds to a vertex (or node), and the edges connecting these

vertices correspond to ~y-ray transitions between levels.

e Gamma-ray branching ratios correspond to edge weights.
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G. Demand, Development of a Novel Algorithm for Nuclear Level Scheme Determination.
Master's thesis, University of Guelph, 2009.



Expressing Network in Terms of Statistical Observables:

e In this representation, vertices correspond to observable ~-rays, while edges connect y-ray transitions
detected in coincidence.

e A unique transition-centric graph exists for every level-centric decay scheme, but additional information
required to reconstruct level-centric decay scheme from transition-centric graph.
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Every weighted, directed graph has a unique adjacency matrix A

Given a start position of vertex i, element A, ; is the probability of transitioning directly to vertex j (non-zero
numbers=branching ratios)

v, Y, Y, Y, Y. Y. Y,

0000 0 0 0\
@’@ O mmp (00000406 0 |%
‘ 0000 0 0 1.0 |V
ORO A=[00000406 0 |V
0000 0 0 0 [

(v:) 0000 0 0 1.0 |Y%
0000 0 0 0 /Y
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Every weighted, directed graph has a unique adjacency matrix A.
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Adjacency matrix elements A;; give the probability of vertex ¢ decaying directly to vertex j in a
weighted, directed graph.

Using matrix multiplication, Azi,j gives the probability of vertex ¢ decaying to vertex j in exactly two
steps.

It can be proven via induction that the probability of decaying from vertex ¢ to vertex j in n steps is
given by Ani, j

Thus, the probability P of decaying from vertex i to vertex 7 in any number of steps is

P = (A+A2+A3+...)ij

Using the identity I + A + A% + A% + ... = (I — A)~1, this implies

P=(I-A)"1-1

G. Demand, Development of a Novel Algorithm for Nuclear Level Scheme Determination.
Master's thesis, University of Guelph, 2009.



Defining the Directed Coincidence Matrix D:

e The product of the observed <y-ray singles vector S; with the probability P; ; of v, decay occurring
immediately after v; decay defines the (reduced) directed coincidence matrix:

D; ;= SP,;

e Substituting our expression for probability in terms of the adjacency matrix:

D=S(I-A)~"-1I

e The matrix sum of D and its transpose yields the observable, undirected coincidence matrix:

C=D+D"
UNIVERSITY
o GM G. Demand, Development of a Novel Algorithm for Nuclear Level Scheme Determination.

Master's thesis, University of Guelph, 2009.



Numerical Solution:

e Goal: Given S,C, find A, D such that

D=S(I-A)""'-1) andC=D+D"

e Therefore we have two governing equations:

D=S((I-A)"1-1I)

C =D+ DT

e Satisfying both equations leads to the nonlinear optimization problem:

ming p ||D -8 ((I - A)~! - I)J/

Enforce
constraints such
as conservation
of energy, non-
negative decay
intensities, etc.

|2

subject to: IA >0, Zj Ai; < 1|C = D+ DT PHYSICS!

URERR Y » Finding A, D that produce the global minimum value is equivalent to finding A, D
that satisfy the governing equations (and thus describe the true level scheme)
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Mathematical Formulation for Writing Level Scheme Construction as Matrix Equations

e Start with data from Gamma-Ray Spectroscopy experiment:
— §': ~-ray transitions & intensities (as diagonal matrix)
— ' : 7 coincidence data

e Following Demand (2013), try to satisfy two equations simultaneously:

D=5 (I - -1) and € =Bk DT

e Inverse optimization problem results in two matrices:

— A the matrix of branching ratios between subsequent y-rays 9938
— the directed coincidence data
8313
7591 o

e Final Step: Create energy level scheme from matrix output

[[ e. 0. 0. e. 0. 0. 0. 0. e. 0. ] 2064
[4068. 0. 0. e. 0. 0. 0. e. e. 0. ]

[ e. 0. 0. e. 0. 0. 0. 0. e. 0. ]

[3563.85 3563.05 4889.95 . 0. 0. 0. e. e. 0. ]

[ e. 0. 0. e. 0. 0. 0. 0. e. 0. ]

[4229.02 4220.02 5708.98  @. 0. 0. 0. e. e. 0. ]

[ oe. 0. 0. e. 0. 0. 0. 0. e. 0. ]

[1731.1 1731.1 2336.9 4068. 0. 0. 0. 0. e. 0. ] L
[1486.44 1486.44 2006.62 ©. 4097.94 3493.86  ©. e. e. 0. ]

[ e. 0. 0. e. 0. 0. 0. 0. e. o. 1]
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‘Thank vou!
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Quantum Annealing

Quantum annealing is a guantum optimization technique that is inspired by the physical process of annealing,
which is the gradual cooling of a material to reach its lowest energy state. Quantum annealing works by encoding
the optimization problem into a Hamiltonian, which is a mathematical operator that describes the energy of a
guantum system. The Hamiltonian has two terms: one that represents the objective function to be minimized, and
one that induces quantum fluctuations. The algorithm starts with a high value of the quantum fluctuation term,
which puts the system in a superposition of all possible states. Then, the algorithm gradually decreases the
guantum fluctuation term and increases the objective function term, which drives the system towards the lowest
energy state, which corresponds to the optimal solution.

Quantum annealing has been implemented on specialized hardware devices called quantum annealers, such as
those developed by D-Wave Systems. Quantum annealers have thousands of qubits, which are the basic units of
guantum information, and can solve large-scale optimization problems in seconds. However, quantum annealing
also has some drawbacks, such as noise, decoherence, and limited connectivity between qubits. Moreover,
guantum annealing is not guaranteed to find the global optimum, and may get stuck in local minima.
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Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a guantum optimization algorithm that is based on the idea of variational quantum algorithms, which
are hybrid algorithms that combine quantum and classical computation. QAOA works by encoding the
optimization problem into a Hamiltonian, similar to quantum annealing. However, instead of gradually changing
the Hamiltonian, QAOA applies a sequence of unitary operators to an initial state, which are parameterized by
some angles. The unitary operators are chosen to alternate between the objective function term and the
guantum fluctuation term. The algorithm then measures the final state and evaluates the objective function
value. The algorithm repeats this process for different values of the angles, and uses a classical optimizer to find
the optimal values that minimize the objective function.QAOA has some advantages over quantum annealing,
such as being more robust to noise and decoherence, and being able to run on general-purpose quantum
computers. However, QAOA also has some challenges, such as requiring many measurements and classical
optimization steps, and having a trade-off between the quality of the solution and the depth of the circuit.
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Quantum Gradient Descent

Quantum gradient descent is another variational quantum algorithm that is inspired by the classical
gradient descent method, which is one of the most widely used optimization techniques in machine
learning. Quantum gradient descent works by encoding the optimization problem into a parametrized
guantum circuit, which acts as an ansatz or a guess for the optimal state. The algorithm then measures the
output of the circuit and evaluates the objective function value. The algorithm then computes the gradient
of the objective function with respect to the parameters of the circuit, either analytically or numerically, and
updates the parameters accordingly. The algorithm repeats this process until convergence or until a
stopping criterion is met.

Quantum gradient descent has some benefits over classical gradient descent, such as being able to explore
a larger space of possible solutions and being able to leverage quantum speedups for certain subroutines.
However, quantum gradient descent also faces some difficulties, such as having high circuit complexity and
measurement cost, and being sensitive to noise and barren plateaus.
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Transition-centric graph

v

Level-centric decay scheme
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Element-wise
multiplication

Improvements in Optimization

Not all Optimization Problems Created Equal /
/—\ /\ /
min|D — s((7 - A)~* - D|I° min||D — ST]|* min||(X ° €)A + SA — (X ° O)|I*
sub]ect to: subject to: subject to:
A=0, Az, A =0,
ZA,-]-SL ZAUSl ZA,-,-S1
: 7 j
C]=D+DT C=D+DT Xij+X;;=1

I-AT+D=1I

Optimization rarely

‘ Calculating the inverse is far ‘ converges, search space ' Better! Still, optimization may

too computationally Is highly non-convex due fail to converge at times
A¥Ynansive to new constraint
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Restructuring the mathematical optimization into an equivalent
form drastically improves efficiency and reliability Ao &

boratory is 2
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Benchmarking our Work

Successful Outcomes
o Creates perfectly consistent sws__
decay scheme within 2 - 20
minutes (running on a laptop)
for schemes with up to ~80

transitions
Reproduced *Cl
OiUre decay scheme

. O U.5. DEPARTMENT OF Argonne National Laboratory is a
2)ENERGY L Densmente Eroay dosratory 22 Arconne &



Benchmarking our Work

Potential Failures

2. Converges to incorrect answer
o Optimizer could converge to solution where function output is zero; if

converges to solution but objective function is non-zero, decay scheme

must be incorrect
o Borderline cases where solution is an easy fix, i.e. a few misplaced, weak

transitions
Potential Solutions
e Using prior information about decay scheme to constrain elements of
adjacency matrix A to reduce parameter space in numerical optimization
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Determining Elements of S, C Matrices

Software Tools in Production |
o Peakidentification algorithm _ «}

- g1 il uv*"’-"‘\-‘ nlll!«’fxb‘ ;,.1‘-"4\ ' " | |
o Automated peak fitter T = S
102 4 W :
« Background subtraction V»,
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Sub Title Here

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
vitae diam commodo, efficitur
nisl sit amet, viverra mi. Nunc
fringilla tristique suscipit. Nam
sed nisi suscipit, vulputate

tortor ut, condimentum mi.

Vivamus consectetur
condimentum lacus sit amet
rutrum. Nam pharetra libero
erat, ac suscipit neque faucibus
sit amet. Vivamus eu odio nec
sem consectetur accumsan in
eget sem. Donec gravida est

vel ex.
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Option One Option Two Option Three Option Four
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Slide.

Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Maecenas porttitor congue massa.
Fusce posuere, magna sed pulvinar ultricies, purus
lectus malesuada libero, sit amet commodo magna
eros quis urna.
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Chart Example
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Pie Chart Example
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Pie Chart Example
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The End.
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