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Dark photons and ordinary photons
• Dark Photons are plausible extensions of Standard Model (SM) 

and are basically the gauge bosons of a hidden  symmetry 
in BSM physics.


• Kinetically mixes with the SM  (photons). 


• This kinetic mixing can give rise to dark photon to photon 
conversions which make dark photons potentially detectable. 
These inter-conversions are central to lot of the current bounds. 


• Photons can acquire an effective (non-zero) mass in the 
presence of a medium. This can heavily modify the mixing 
properties.


• Moreover, this induced effective mass may not be constant and 
can vary with space and time.
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Dark photons and ordinary photons
• Dark Photons are plausible extensions of Standard Model 

(SM) and are basically the gauge bosons of a hidden  
symmetry in BSM physics.


• Kinetically mixes with the SM  (photons). 


• This kinetic mixing can give rise to dark photon to photon 
conversions which make dark photons potentially detectable. 
These inter-conversions are central to lot of the current bounds.


• Photons can acquire an effective (non-zero) mass in the 
presence of a medium. This can heavily modify the mixing 
properties. 


• Moreover, this induced effective mass may not be constant and 
can vary with space and time.


• Hence, a careful treatment of dark photon-photon oscillations 
in such potential profiles is important to accurately put bounds.
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Resonance and stationary phase approximation

                               

• Highly oscillatory integral


• Except at stationary points,           “MSW effect”


• Integral gets most of it’s contribution from stationary points 


Φ′￼ = 0 ⟶ meff = mγ′￼

Pγ↔γ′￼
= ϵ2 ∫

z

zi

dz′￼

m2
γ′￼

2ω
e−iΦ(z′￼)

2

Φ(z) = ∫
z

zi

dz′￼

m2
γ′￼

− m2
eff

2ω



Resonance and stationary phase approximation

z

m
ef

f
mγ′￼

Φ′￼(zres) = 0

Pγ↔γ′￼
= ϵ2 ∫

z

zi

dz′￼

m2
γ′￼

2ω
e−iΦ(z′￼)

2

Φ(z) = ∫
z

zi

dz′￼

m2
γ′￼

− m2
eff

2ω



Resonance and stationary phase approximation

z

m
ef

f
mγ′￼

Φ′￼(zres) = 0

Pγ↔γ′￼
≈ ϵ2 2π

Φ(2)(zres)

m2
γ′￼

2ω
e−iΦ(zres)

2



Resonance and stationary phase approximation

z

m
ef

f
mγ′￼

Φ′￼(zres) = 0

Pγ↔γ′￼
≈ ϵ2A2 with A ≡

2π

Φ(2)(zres) (
m2

γ′￼

2ω ) “Landau-Zener”



Non-monotonic profiles and multiple resonances

                               

z

m
ef

f
mγ′￼



Non-monotonic profiles and multiple resonances

                               

z

m
ef

f
mγ′￼

z1 z2



Non-monotonic profiles and multiple resonances

z

m
ef

f
mγ′￼

z1 z2

Pγ↔γ′￼
= ϵ2 ∫

z

zi

dz′￼

m2
γ′￼

2ω
e−iΦ(z′￼)

2



Non-monotonic profiles and multiple resonances

z

m
ef

f
mγ′￼

z1 z2

Pγ↔γ′￼ ≈ ϵ2 ∑
n

2π

Φ(2)(zn)

m2
γ′￼

2ω
e−iΦ(zn)

2



Non-monotonic profiles and multiple resonances

z

m
ef

f
mγ′￼

z1 z2

Pγ↔γ′￼
= ϵ2 (∑

n

A2
n + 2∑

n<k

AnAk cos Φnk)



Non-monotonic profiles and multiple resonances

z

m
ef

f
mγ′￼

z1 z2

Pγ↔γ′￼
= ϵ2 (∑

n

A2
n + 2∑

n<k

AnAk cos Φnk) “Sum of LZ”



Pγ↔γ′￼
= ϵ2 (∑

n

A2
n + 2∑

n<k

AnAk cos Φnk)

Non-monotonic profiles and multiple resonances

z

m
ef

f
mγ′￼

z1 z2

“Phase effects”
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NB, Asher Berlin, Katelin Schutz (PRD 2023)
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|Φ(3)(zC) |2/3

NB, Asher Berlin, Katelin Schutz (PRD 2023)
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Reionisation plasma

Mirizzi et al. (2009), Caputo et al. (2020), 

NB, Asher Berlin, Katelin Schutz (PRD 2023)



LZ Phase This work

Reionization plasma

NB, Asher Berlin, Katelin Schutz (PRD 2023)
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Neutron star magnetospheres

B0/Bcrit = 1, P = 1sec, ω = 1eV



Neutron star magnetospheres

LZ Phase This work B0/Bcrit ∼ 10, P ∼ 1 ms, ω ∼ 0.1 eV

“Typical millisecond pulsar”

NB, Asher Berlin, Katelin Schutz (PRD 2023)
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Summary
• Non-monotonic potential profiles are ubiquitous in 

astrophysics. More examples - supernova shockwave, 
solar chromosphere etc.


• The usual Landau-Zener formula breaks down near 
critical points. 


• Our expression for coalescing saddle point provides 
an accurate prescription for evaluating the conversion 
probability.


• Moreover, it can be used for neutrino oscillations, 
axion-photon conversions, etc.
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Funded by:



Stationary phase approximation

Φ(m, z) = Φ(m, z0) + Φ(1)(m, z0)(z − z0) +
1
2!

Φ(2)(m, z0)(z − z0)2 +
1
3!

Φ(3)(m, z0)(z − z0)3 + ⋯

• At critical point, 
m = mC

Φ(1)(mC, z0) = Φ(2)(mC, z0) = 0



DP parameter space and bounds



Neutron star magnetospheres

NB, Berlin, Schutz (PRD 2023)

B0/Bcrit = 10
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Vacuum LZ Phase This work Numerical a = 2, b = 10



Neutron star magnetospheres

m2
eff =

4παρGJ

eme

• Effective mass induced by plasma


m2
eff = −

7α
45π ( Bext

Bcrit )
2

ω2

•  is dominated by the dipole component 
Bext

• Effective mass induced by large external magnetic fields
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