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𝑇 ↑

nucleus

𝑇~1012 𝐾𝑒𝑙𝑣𝑖𝑛 (~ 108 𝑒𝑉) 𝑇~102 𝐾𝑒𝑙𝑣𝑖𝑛 (10−2 𝑒𝑉) 
Quark Gluons Plasma

𝑇 ↑

High energy nuclear collisions & nuclear equation of state

Ref.: https://www.expii.com/t/phase-change-diagram-of-water-overview-importance-8031

Ref.: https://en.wikipedia.org/wiki/Atomic_nucleus
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Evolution of the nuclear medium as seen through jets
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• The nuclear fluid is created during pre-
equilibrium dynamics stage, where most of 
the collision’s 𝑇𝜇𝜈 will be in the fluid.

• Hydrodynamical stage (Temp ∼ 102 MeV): 
Strongly coupled quark gluon plasma (QGP) 
- Equation of State (EoS) computed via 

Lattice QCD 

• Molecular dynamics stage (Temp ∼ 10 MeV): 
𝜆𝑚𝑖𝑐𝑟𝑜 ∼ 𝐿ℎ𝑦𝑑𝑟𝑜, simulation switches to 

Boltzmann transport

• Following free-streaming, soft hadrons (𝑝𝑇 ≲
 3 GeV/c) carry most of the medium’s 𝑇𝜇𝜈 to 
detectors.

Viscous fluid 
dynamics

Boltzmann 
Transport

Temp ∼  102 MeV Temp ∼ 10 MeV

𝑡 ∼ 0 fm/c 𝑡 ∼ 1 fm/c 𝑡 ∼ 100 fm/c𝑡 ∼ 10 fm/c 𝑡 ∼ 1015 fm/c
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Boltzmann transport

• Following free-streaming, soft hadrons (𝑝𝑇 ≲
 3 GeV/c) carry most of the medium’s 𝑇𝜇𝜈 to 
detectors.

Viscous fluid 
dynamics

Boltzmann 
Transport

Temp ∼  102 MeV Temp ∼ 10 MeV

𝑡 ∼ 0 fm/c 𝑡 ∼ 1 fm/c 𝑡 ∼ 100 fm/c𝑡 ∼ 10 fm/c 𝑡 ∼ 1015 fm/c

• To help simulate these different aspects of heavy-ion collisions, the JETSCAPE 
(Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope) 
framework was used.



Nuclear equation of state in thermal equilibrium

Lattice QCD (L-QCD) equation of state (EoS)

𝜇𝐵 : (net) Baryon chemical potential

𝜇𝐵 ∝ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟𝑦𝑜𝑛𝑠)  − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑡𝑖𝑏𝑎𝑟𝑦𝑜𝑛𝑠)

Ref.: V. Dexheimer et al, Universe 5, 129 (2019)
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Ref.: S. Borsanyi et al, PLB 730 (2014)

Perturbative 
calculation w/
quark & gluons

Hadron Gas

LQCD EoS at 𝜇𝐵 = 0 MeV

• ↑ 𝑠𝑁𝑁 ⇒ more gluons ⇒ 𝑛𝑞 ∼ 𝑛 ത𝑞 ⇒ 𝜇𝐵 ≈ 0

• ↓ 𝑠𝑁𝑁 ⇒ more valance quarks ⇒ 𝜇𝐵 > 0



Overview of fluid dynamics
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• 𝑃(𝑇) can be used to describe fluids in perfect thermal equilibrium

• Is a perfect thermal equilibrium created after a nucleus-nucleus collision? 
• Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it’s dissipative or viscous



Overview of fluid dynamics

7

• 𝑃(𝑇) can be used to describe fluids in perfect thermal equilibrium

• Is a perfect thermal equilibrium created after a nucleus-nucleus collision? 
• Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it’s dissipative or viscous

• Fluid perturbations and dissipation:

𝑃𝑒𝑟𝑡. ∝ exp 𝑖(𝑐𝑠𝑘𝑡 − 𝑘 ⋅ Ԧ𝑥) −
4𝜂

3𝑠

𝑘

2𝑇
𝑘𝑡

Wave propagation of 
perturbations at speed of 
sound 𝑐𝑠

Decay/Dissipation
 of perturbations 
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• 𝑃(𝑇) can be used to describe fluids in perfect thermal equilibrium

• Is a perfect thermal equilibrium created after a nucleus-nucleus collision? 
• Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it’s dissipative or viscous

• Fluid perturbations and dissipation:

• Specific shear viscosity 𝜂/𝑠 is a transport coefficient 
• 𝜂 shear viscosity

• 𝑠 entropy density

• 𝜂 introduces friction between fluid layers 

𝑃𝑒𝑟𝑡. ∝ exp 𝑖(𝑐𝑠𝑘𝑡 − 𝑘 ⋅ Ԧ𝑥) −
4𝜂

3𝑠

𝑘

2𝑇
𝑘𝑡

Wave propagation of 
perturbations at speed of 
sound 𝑐𝑠

Decay/Dissipation
 of perturbations 



• In high-energy collisions (w/ negligible 𝜇𝐵), what is flowing?... That can only be energy 
density 𝜖, mass density is inappropriate: pair production & annihilation!
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An irreducible tensor decomposition of hydrodynamics



• In high-energy collisions (w/ negligible 𝜇𝐵), what is flowing?... That can only be energy 
density 𝜖

• Non-dissipative 𝑇0
𝜇𝜈

can only take the form:
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An irreducible tensor decomposition of hydrodynamics

𝑇𝜇𝜈𝑢𝜈 = 𝜖𝑢𝜇

𝑇0
𝜇𝜈

= 𝜖𝑢𝜇𝑢𝜈 − 𝑃 𝜖 Δ𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃 𝜖 (𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈)

𝑢𝜇 = 𝛾, 𝛾 Ԧ𝛽   where 

 𝛾 = 1 − 𝛽2 −1/2
 and Ԧ𝛽 = Ԧ𝑣/𝑐. Using natural units from now on ⇒ 𝑐 = 1 = ℏ = 𝑘𝐵Landau’s definition of 

fluid flow

Note: 𝑢2 ≡ 1 ⇒ ሶ𝑢𝜇𝑢𝜇 = 0

⇒ Pressure drives ሶ𝑢𝜇 ⊥ 𝑢𝜇 ⇒ 𝑃(𝜖)Δ𝜇𝜈



• In high-energy collisions (w/ negligible 𝜇𝐵), what is flowing?... That can only be energy 
density 𝜖

• Non-dissipative 𝑇0
𝜇𝜈

can only take the form:

• Including dissipation gives rise to dissipative corrections 𝛿𝑇𝜇𝜈 to 𝑇0
𝜇𝜈

, namely Π and 𝜋𝜇𝜈
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An irreducible tensor decomposition of hydrodynamics
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𝑢𝜇 = 𝛾, 𝛾 Ԧ𝛽   where 

 𝛾 = 1 − 𝛽2 −1/2
 and Ԧ𝛽 = Ԧ𝑣/𝑐. Using natural units from now on ⇒ 𝑐 = 1 = ℏ = 𝑘𝐵

𝑇𝜇𝜈 = 𝑇0
𝜇𝜈

+ 𝛿𝑇𝜇𝜈 = 𝑇0
𝜇𝜈

− ΠΔ𝜇𝜈 + 𝜋𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈

Bulk viscous
pressure

Shear viscous
pressure tensor

Landau’s flow definition
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where the viscous pressures are decomposed in terms of irreducible tensors, namely

angular deformations 

Π = −
1

3
Δ𝜇𝜈𝑇𝜇𝜈 − 𝑃(𝜖) 𝜋𝜇𝜈 = 𝑇⟨𝜇𝜈⟩ = Δ𝛼𝛽

𝜇𝜈
𝑇𝛼𝛽 =

1

2
Δ𝛼

𝜇
Δ𝛽

𝜈 + Δ𝛽
𝜇

Δ𝛼
𝜈 −

1

3
Δ𝜇𝜈Δ𝛼𝛽 𝑇𝛼𝛽

radial deformations

w/ 𝜋𝜇
𝜇

= 0 and 𝑢𝜇𝜋𝜇𝜈 = 0 

Landau’s flow definition
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• The EoM for Π and 𝜋𝜇𝜈 are from the Boltzmann equation. 13

An irreducible tensor decomposition of hydrodynamics

𝑇𝜇𝜈𝑢𝜈 = 𝜖𝑢𝜇

𝑇0
𝜇𝜈

= 𝜖𝑢𝜇𝑢𝜈 − 𝑃 𝜖 Δ𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃 𝜖 (𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈)

𝑢𝜇 = 𝛾, 𝛾 Ԧ𝛽   where 

 𝛾 = 1 − 𝛽2 −1/2
 and Ԧ𝛽 = Ԧ𝑣/𝑐. Using natural units from now on ⇒ 𝑐 = 1 = ℏ = 𝑘𝐵

𝑇𝜇𝜈 = 𝑇0
𝜇𝜈

+ 𝛿𝑇𝜇𝜈 = 𝑇0
𝜇𝜈

− ΠΔ𝜇𝜈 + 𝜋𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈

where the viscous pressures are decomposed in terms of irreducible tensors, namely

angular deformations 

Π = −
1

3
Δ𝜇𝜈𝑇𝜇𝜈 − 𝑃(𝜖) 𝜋𝜇𝜈 = 𝑇⟨𝜇𝜈⟩ = Δ𝛼𝛽

𝜇𝜈
𝑇𝛼𝛽 =

1

2
Δ𝛼

𝜇
Δ𝛽

𝜈 + Δ𝛽
𝜇

Δ𝛼
𝜈 −

1

3
Δ𝜇𝜈Δ𝛼𝛽 𝑇𝛼𝛽

radial deformations

w/ 𝜋𝜇
𝜇

= 0 and 𝑢𝜇𝜋𝜇𝜈 = 0 

Landau’s flow definition



• Expanding the 𝑓𝑝 in the Boltzmann equation 𝑝𝜇𝜕𝜇𝑓𝑝 = 𝐶[𝑓𝑝] w/ irreducible moments
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H. Grad moment expansion of the Boltzmann equation 

𝑓𝑝 = 𝑓0𝑝 + 𝛿𝑓𝑝 = 𝑓0𝑝 1 + 𝐺 𝑝0, | Ԧ𝑝| ⊗ 𝜙𝑝

“radial” dep.

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

“angular” dep.thermal
distribution
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𝜇 + 𝐺2 𝑝0, | Ԧ𝑝| 𝑐⟨𝜇𝜈⟩ 𝑝

⟨𝜇𝑝𝜈⟩ + ⋯  

“radial” dep.

“angular” dep.

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

monopole quadrupole

dipole
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conserved charge diffusion

“radial” dep.

“angular” dep.

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

monopole quadrupole
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= 𝑓0𝑝 + 𝛿𝑓Π + 𝛿𝑓𝜋 + ⋯

“radial” dep.

“angular” dep.

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

where
𝛿𝑓𝑝

𝑓0𝑝
< 1 is assumed

monopole quadrupole

conserved charge diffusion



• Expanding the 𝑓𝑝 in the Boltzmann equation 𝑝𝜇𝜕𝜇𝑓𝑝 = 𝐶[𝑓𝑝] w/ irreducible moments

• For an ideal fluid (i.e., ideal hydrodynamics) 
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H. Grad moment expansion of the Boltzmann equation 

𝑓𝑝 = 𝑓0𝑝 + 𝛿𝑓𝑝 = 𝑓0𝑝 1 + 𝐺 𝑝0, | Ԧ𝑝| ⊗ 𝜙𝑝

w/  𝑓0𝑝 = exp
𝑝⋅𝑢

𝑇
− 𝜇 ± 𝑎

−1
𝑇0

𝜇𝜈
= න

𝑑3𝑝

2𝜋 3𝑝0 𝑝𝜇𝑝𝜈𝑓0𝑝

= 𝑓0𝑝 1 + 𝐺0 𝑝0, | Ԧ𝑝| + 𝐺1 𝑝0, | Ԧ𝑝| 𝑐⟨𝜇⟩𝑝
𝜇 + 𝐺2 𝑝0, | Ԧ𝑝| 𝑐⟨𝜇𝜈⟩ 𝑝

⟨𝜇𝑝𝜈⟩ + ⋯  

= 𝑓0𝑝 + 𝛿𝑓Π + 𝛿𝑓𝜋 + ⋯

“radial” dep.

“angular” dep.

𝑎 = ቐ
1 Bose − Einstein
0 Boltzmann

−1 Fermi − Dirac

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

where
𝛿𝑓𝑝

𝑓0𝑝
< 1 is assumed

monopole quadrupole

conserved charge diffusion



• Expanding the 𝑓𝑝 in the Boltzmann equation 𝑝𝜇𝜕𝜇𝑓𝑝 = 𝐶[𝑓𝑝] w/ irreducible moments

• For an ideal fluid (i.e., ideal hydrodynamics) 

• While the EoM for monopole and quadrupole deformations use Boltzmann equation 
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w/  𝑓0𝑝 = exp
𝑝⋅𝑢

𝑇
− 𝜇 ± 𝑎

−1
𝑇0

𝜇𝜈
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𝑑3𝑝
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= 𝑓0𝑝 + 𝛿𝑓Π + 𝛿𝑓𝜋 + ⋯

𝜋𝜇𝜈 = Δ𝛼𝛽
𝜇𝜈

න
𝑑3𝑝

2𝜋 3𝑝0 𝑝𝛼𝑝𝛽𝛿𝑓𝜋Π = −
Δ𝛼𝛽

3
න

𝑑3𝑝

2𝜋 3𝑝0 𝑝𝛼𝑝𝛽𝛿𝑓Π;

“radial” dep.

“angular” dep.

𝑎 = ቐ
1 Bose − Einstein
0 Boltzmann

−1 Fermi − Dirac

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

where
𝛿𝑓𝑝

𝑓0𝑝
< 1 is assumed

monopole quadrupole

conserved charge diffusion



Relativistic dissipative hydrodynamics from Grad’s expansion

• Relativistic dissipative hydrodynamics

• The expanding the Boltzmann equation 𝑝𝜇𝜕𝜇𝑓𝑝 = 𝐶 𝑓𝑝 using 𝛿𝑓Π,𝜋 up to rank-2 tensors gives EoM
for Π and 𝜋𝜇𝜈: 
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𝜕𝜇  𝑇𝜇𝜈 = 0

𝑇𝜇𝜈 = 𝜀𝑢𝜇𝑢𝜈 − 𝑃 𝜀 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈

Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 

𝜏𝜋 ሶ𝜋〈𝜇𝜈〉+𝜋𝜇𝜈= 2𝜂𝜎𝜇𝜈 − 𝛿𝜋𝜋𝜋𝜇𝜈𝜃 + 𝜙7𝜋𝛼
〈𝜇

𝜋
𝜈〉𝛼

− 𝜏𝜋𝜋𝜋𝛼
⟨𝜇

𝜎𝛼
𝜈〉

+ 𝜆𝜋ΠΠ𝜎𝜇𝜈 + ⋯

𝜏Π
ሶΠ + Π = −𝜁𝜃 − 𝛿ΠΠΠ𝜃 + 𝜆Π𝜋𝜋𝜇𝜈𝜎𝜇𝜈 + ⋯

𝜃 = 𝜕𝜇𝑢𝜇

𝜎𝜇𝜈 = 𝜕⟨𝜇𝑢𝜈⟩

𝑃(𝜀) use lattice QCD EoS



Relativistic dissipative hydrodynamics from Grad’s expansion

• Relativistic dissipative hydrodynamics

• The expanding the Boltzmann equation 𝑝𝜇𝜕𝜇𝑓𝑝 = 𝐶 𝑓𝑝 using 𝛿𝑓Π,𝜋 up to rank-2 tensors gives EoM
for Π and 𝜋𝜇𝜈: 

• The goal is to constrain 𝜁 and 𝜂 via Bayesian analysis [all transport coefficient are set c.f. PRD 85
114047 (2012), PRC 90 024912 (2014)]
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𝜕𝜇  𝑇𝜇𝜈 = 0

𝑇𝜇𝜈 = 𝜀𝑢𝜇𝑢𝜈 − 𝑃 𝜀 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈

Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 

𝜏𝜋 ሶ𝜋〈𝜇𝜈〉+𝜋𝜇𝜈= 2𝜂𝜎𝜇𝜈 − 𝛿𝜋𝜋𝜋𝜇𝜈𝜃 + 𝜙7𝜋𝛼
〈𝜇

𝜋
𝜈〉𝛼

− 𝜏𝜋𝜋𝜋𝛼
⟨𝜇

𝜎𝛼
𝜈〉

+ 𝜆𝜋ΠΠ𝜎𝜇𝜈 + ⋯

𝜏Π
ሶΠ + Π = −𝜁𝜃 − 𝛿ΠΠΠ𝜃 + 𝜆Π𝜋𝜋𝜇𝜈𝜎𝜇𝜈 + ⋯

𝜃 = 𝜕𝜇𝑢𝜇

𝜎𝜇𝜈 = 𝜕⟨𝜇𝑢𝜈⟩

𝑃(𝜀) use lattice QCD EoS



• As 𝜖 ↓ ⇒ 𝜆𝑚𝑓𝑝 ↑. Once 𝜆𝑚𝑓𝑝 ∼ 𝐿, the hydrodynamical approximation breaks down 
⇒ the full Boltzmann equation must be solved. 

22

Relativistic dissipative hydrodynamics



• As 𝜖 ↓ ⇒ 𝜆𝑚𝑓𝑝 ↑. Once 𝜆𝑚𝑓𝑝 ∼ 𝐿, the hydrodynamical approximation breaks down 
⇒ the full Boltzmann equation must be solved. 

• Converting fluid degrees of freedom to particle distributions via the 
Cooper-Frye prescription 

23

Relativistic dissipative hydrodynamics

𝑝0
𝑑3𝑁

𝑑3𝑝
=

1

2𝜋 3
න 𝑑3Σ𝜇𝑝𝜇 𝑓0 + 𝛿𝑓Π + 𝛿𝑓𝜋

https://en.wikipedia.org/wiki/Stokes%27_theorem

𝑓0 = 𝑔 exp Τ𝐸 𝑇 + 𝑎 −1

𝑎 = ቐ
1 Bose − Einstein
0 Boltzmann

−1 Fermi − Dirac



• As 𝜖 ↓ ⇒ 𝜆𝑚𝑓𝑝 ↑. Once 𝜆𝑚𝑓𝑝 ∼ 𝐿, the hydrodynamical approximation breaks down
⇒ the full Boltzmann equation must be solved. 

• Converting fluid degrees of freedom to particle distributions via the 
Cooper-Frye prescription 

• Grad’s expansion, using Τ𝛿𝑓 𝑓0 < 1, yields

24

Relativistic dissipative hydrodynamics

𝑝0
𝑑3𝑁

𝑑3𝑝
=

1

2𝜋 3
න 𝑑3Σ𝜇𝑝𝜇 𝑓0 + 𝛿𝑓Π + 𝛿𝑓𝜋

𝛿𝑓Π = 𝑓0 1 + 𝑎𝑓0 Π 𝐴𝐸 𝑝 ⋅ 𝑢 2 + 𝐴𝑇𝑚2

𝛿𝑓𝜋 = 𝑓0 1 + 𝑎𝑓0 𝐴𝜋𝑝𝜇𝑝𝜈𝜋𝜇𝜈 = 𝑓0 1 + 𝑎𝑓0
𝑝𝜇𝑝𝜈𝜋𝜇𝜈

2 𝜖+𝑃 𝑇2

𝐴𝐸 , 𝐴𝑇 ∝ න
𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑚 −𝑝 ⋅ Δ ⋅ 𝑝 𝑛𝑓0 1 + 𝑎𝑓0  thermodynamical integrals
[PRC 103, 064903 (2021)]

https://en.wikipedia.org/wiki/Stokes%27_theorem

𝑓0 = 𝑔 exp Τ𝐸 𝑇 + 𝑎 −1



• As 𝜖 ↓ ⇒ 𝜆𝑚𝑓𝑝 ↑. Once 𝜆𝑚𝑓𝑝 ∼ 𝐿, the hydrodynamical approximation breaks down
⇒ the full Boltzmann equation must be solved. 

• Converting fluid degrees of freedom to particle distributions via the 
Cooper-Frye prescription 

• An alternative to the Grad expansion, Chapman-Enskog expansion 
uses small gradients (i.e. flow, 𝜇𝐵, …) as expansion parameter
( Τ𝛿𝑓 𝑓0 < 1)
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Relativistic dissipative hydrodynamics

𝑝0
𝑑3𝑁

𝑑3𝑝
=

1

2𝜋 3
න 𝑑3Σ𝜇𝑝𝜇 𝑓0 + 𝛿𝑓Π + 𝛿𝑓𝜋

https://en.wikipedia.org/wiki/Stokes%27_theorem

𝛿𝑓𝜋 = 𝑓0 1 + 𝑎𝑓0
𝑝𝜇𝑝𝜈𝜋𝜇𝜈

2 𝑝⋅𝑢 𝐽32
; 𝐽𝑟𝑞  ∝ න

𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑟−2𝑞 −𝑝 ⋅ Δ ⋅ 𝑝 𝑞𝑓0 1 + 𝑎𝑓0  

𝛿𝑓Π = 𝑓0 1 + 𝑎𝑓0
Π

𝛽Π

𝑝⋅𝑢 ℱ

𝑇2  −
𝑝⋅Δ⋅𝑝

3𝑇 𝑝⋅𝑢
; 𝛽Π, ℱ ∝ න

𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑚 −𝑝 ⋅ Δ ⋅ 𝑝 𝑛𝑓0 1 + 𝑎𝑓0  

[PRC 103, 064903 (2021)]

𝑓0 = 𝑔 exp Τ𝐸 𝑇 + 𝑎 −1



• As 𝜖 ↓ ⇒ 𝜆𝑚𝑓𝑝 ↑. Once 𝜆𝑚𝑓𝑝 ∼ 𝐿, the hydrodynamical approximation breaks down
⇒ the full Boltzmann equation must be solved. 

• Converting fluid degrees of freedom to particle distributions via the 
Cooper-Frye prescription 

• An alternative to the Grad expansion, Chapman-Enskog expansion 
uses small gradients (i.e. flow, 𝜇𝐵, …) as expansion parameter

• Note that Chapman-Enskog expansion gives the same equations of motion for Π and 𝜋𝜇𝜈

as Grad’s moments, however with different transport coefficients. [PRC 89, 054903 (2014)]
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Relativistic dissipative hydrodynamics

𝑝0
𝑑3𝑁

𝑑3𝑝
=

1

2𝜋 3
න 𝑑3Σ𝜇𝑝𝜇 𝑓0 + 𝛿𝑓Π + 𝛿𝑓𝜋

https://en.wikipedia.org/wiki/Stokes%27_theorem

𝐽𝑟𝑞  ∝ න
𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑟−2𝑞 −𝑝 ⋅ Δ ⋅ 𝑝 𝑞𝑓0 1 + 𝑎𝑓0  

𝛽Π, ℱ ∝ න
𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑚 −𝑝 ⋅ Δ ⋅ 𝑝 𝑛𝑓0 1 + 𝑎𝑓0  

[PRC 103, 064903 (2021)]

𝛿𝑓𝜋 = 𝑓0 1 + 𝑎𝑓0
𝑝𝜇𝑝𝜈𝜋𝜇𝜈

2 𝑝⋅𝑢 𝐽32
; 

𝛿𝑓Π = 𝑓0 1 + 𝑎𝑓0
Π

𝛽Π

𝑝⋅𝑢 ℱ

𝑇2  −
𝑝⋅Δ⋅𝑝

3𝑇 𝑝⋅𝑢
; 

𝑓0 = 𝑔 exp Τ𝐸 𝑇 + 𝑎 −1



• Converting fluid degrees of freedom to particle distributions via the 
Cooper-Frye prescription 

• If 
𝛿𝑓

𝑓0
∼1 is present, a resummed expansion follows the ansatz

suggested by Pratt-Torrieri-Bernhard 
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Relativistic dissipative hydrodynamics

𝑝0
𝑑3𝑁

𝑑3𝑝
=

1

2𝜋 3
න 𝑑3Σ𝜇𝑝𝜇𝑓

https://en.wikipedia.org/wiki/Stokes%27_theorem[PRC 103, 064903 (2021)]

𝑓 =
𝒵Π

det(Λ)
exp

| Ԧ𝑝′|2 + 𝑚2

𝑇
+ 𝑎

−1

𝑎 = ቐ
1 Bose − Einstein
0 Boltzmann

−1 Fermi − Dirac

Ԧ𝑝′ = Λ−1 Ԧ𝑝

Λ𝑖𝑗 = 1 + 𝜆Π 𝛿𝑖𝑗 +
𝜋𝑖𝑗𝑇

2𝐽32

𝐿𝑟𝑞  ∝ න
𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑟−2𝑞 −𝑝 ⋅ Δ ⋅ 𝑝 𝑞𝑓 

𝒵Π =
Π + 𝑃(𝜀)

𝐿21

𝐽𝑟𝑞  ∝ න
𝑑3𝑝

2𝜋 3𝑝0 𝑝 ⋅ 𝑢 𝑟−2𝑞 −𝑝 ⋅ Δ ⋅ 𝑝 𝑞𝑓0 1 + 𝑎𝑓0  



• Converting fluid degrees of freedom to particle distributions via the 
Cooper-Frye prescription 

• The approximations for 𝑓 are :

• Grad moment approximation (up to 2nd moment) linearizes 𝑓 → 𝑓0 + 𝛿𝑓

• Chapman-Enskog (small) gradient approximation linearizes 𝑓 → 𝑓0 + 𝛿𝑓

• Pratt-Torrieri-Bernhard deformed (thermal-like) distribution (non-linear 𝑓)

• The goal is to investigate the constraints on the shear (𝜂) and bulk (𝜁) viscosity from measurements of 

𝑝0 𝑑3𝑁

𝑑3𝑝
using various hadrons & contrast various 𝑓 results.
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Relativistic dissipative hydrodynamics

https://en.wikipedia.org/wiki/Stokes%27_theorem

𝑝0
𝑑3𝑁

𝑑3𝑝
=

1

2𝜋 3
න 𝑑3Σ𝜇𝑝𝜇𝑓



A measure of anisotropic flow (𝑣𝑛)

• Elliptic Flow

29

- A nucleus-nucleus collision is typically not head on;
 an almond-shape region of matter is created.
- To quantify this almond-shape region, the centrality is 
introduced, where 0-10% being the 10% most head-on 
collisions, while 40-50% being semi-peripheral collisions 
shown.
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A measure of anisotropic flow (𝑣𝑛)

• Elliptic Flow

30

- A nucleus-nucleus collision is typically not head on;
 an almond-shape region of matter is created.
- To quantify this almond-shape region, the centrality is 
introduced, where 0-10% being the 10% most head-on 
collisions, while 40-50% being semi-peripheral collisions 
shown.
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A measure of anisotropic flow (𝑣𝑛)

• Elliptic Flow

• To describe the angular (𝜙) momentum distribution (in x-y plane, i.e. Ԧ𝑝⊥), use a Fourier 
decomposition (i.e. flow coefficients) 𝑣𝑛

• Second Fourier coefficient: elliptic flow (𝑣2) is the largest.
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- A nucleus-nucleus collision is typically not head on;
 an almond-shape region of matter is created.
- To quantify this almond-shape region, the centrality is 
introduced, where 0-10% being the 10% most head-on 
collisions, while 40-50% being semi-peripheral collisions 
shown.



A measure of anisotropic flow (𝑣𝑛)

• Elliptic Flow

• To describe the angular (𝜙) momentum distribution (in x-y plane, i.e. Ԧ𝑝⊥), use a Fourier 
decomposition (i.e. flow coefficients) 𝑣𝑛

• Second Fourier coefficient: elliptic flow (𝑣2) is the largest.

• The more circular the Ԧ𝑝𝑇-distribution ⇒ smaller 𝑣2, while the more elliptical ⇒ larger the 𝑣2.
32
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- A nucleus-nucleus collision is typically not head on;
 an almond-shape region of matter is created.
- To quantify this almond-shape region, the centrality is 
introduced, where 0-10% being the 10% most head-on 
collisions, while 40-50% being semi-peripheral collisions 
shown.



A recent Bayesian analysis constraining 
𝜂

𝑠
and 

𝜁

𝑠

33

arxiv:1804.06469

• The Bayesian analysis constrains parameters in 
the fluid simulation using various LHC Pb-Pb 
data 𝑠𝑁𝑁 = 2.76 𝑇𝑒𝑉 & 𝑠𝑁𝑁 = 5.02 𝑇𝑒𝑉 :
• Multiplicity of identified particles

• Average 𝑝𝑇 of identified particles

• Anisotropic flow 𝑣𝑛

• Fluctuations around 𝑝𝑇

• Constraints using the resummed ansatz of 
Pratt-Torrieri-Bernhard for 𝛿𝑓



A recent Bayesian analysis constraining 
𝜂

𝑠
and 

𝜁

𝑠

• Constraints using the Pratt-Torrieri-Bernhard 𝛿𝑓 ansatz

34

𝜂

𝑠
𝑇 =

𝜂

𝑠 min
+

𝜂

𝑠 slope
𝑇 − 𝑇𝑐

𝑇

𝑇𝑐

𝜂
𝑠

 𝑐𝑟𝑣 

Θ 𝑇 − 𝑇𝑐

𝜁

𝑠
𝑇 =

𝜁
𝑠 max

𝜁
𝑠 𝑤𝑖𝑑𝑡ℎ

2

𝜁
𝑠 𝑤𝑖𝑑ℎ𝑡

2

+ 𝑇 − 𝑇0
2

Nature Phys. 15, 1113 (2019)
& arxiv:1804.06469

𝑇𝑐 = 0.154 𝐺𝑒𝑉

𝐿𝐻𝐶 @ 𝑠𝑁𝑁 = 2.76 𝑇𝑒𝑉 & 𝑠𝑁𝑁 = 5.02 𝑇𝑒𝑉



• Bulk and shear viscosities were parametrized using 4-parameter functions

35

Modelling specific bulk (𝜁/𝑠) and shear (𝜂/𝑠) viscosities

𝜂

𝑠
𝑇 = 𝑎low 𝑇 − 𝑇𝜂 Θ 𝑇𝜂 − 𝑇 +

𝜂

𝑠 kink

+𝑎high 𝑇 − 𝑇𝜂 Θ T − T𝜂

𝜁

𝑠
𝑇 =

𝜁
𝑠 max

Λ2

Λ2 + 𝑇 − 𝑇𝜁
2

Λ = 𝑤𝜁 1 + 𝜆𝜁 𝑇 − 𝑇𝜁  

PRC 103 054904 (2021) PRC 103 054904 (2021) 



• Constraints on viscosities using only ALICE 
LHC @ 𝑠𝑁𝑁 = 2.76 TeV data and Grad’s 𝛿𝑓
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PRC 103 054904 (2021) 

Comparisons w/ experimental data using Bayesian calibration
PRC 103 054904 (2021) PRC 103 054904 (2021) 



• Constraints on viscosities using only STAR 
RHIC @ 𝑠𝑁𝑁 = 200 𝐺𝑒𝑉 data and Grad’s 𝛿𝑓

37

PRC 103 054904 (2021) 

Comparisons w/ experimental data using Bayesian calibration
PRC 103 054904 (2021) PRC 103 054904 (2021) 



• Constraint on viscosities using RHIC and LHC 
data and Grad’s 𝛿𝑓
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PRC 103 054904 (2021) 

Comparisons w/ experimental data using Bayesian calibration
PRC 103 054904 (2021) PRC 103 054904 (2021) 
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• The constraints on 𝜁/𝑠 and 
𝜂/𝑠 from three different 
models

• Grad’s 𝛿f (blue) 

• Chapman-Enskog 𝛿𝑓 (red)

• Pratt-Torrieri-Bernhard 
model (green) 

Combining different 𝛿𝑓 results using Bayesian Model Averaging

PRC 103 054904 (2021) PRC 103 054904 (2021) 



• Computing the Bayes factor (i.e. Bayesian evidence) allows to say that there are
• 5000:1 odds that the Grad model is better than the Chapman-Enskog model, or 3.6𝜎 observation.

• 3:1 odds that the Grad model is better than the Pratt-Torrieri-Bernhard model, or a 0.6𝜎 observation.

• Combining the three-models in proportion 5000:2000:1 using Bayesian Model Averaging (BMA), 
yields the robust constraints in orange. This is the first use of BMA in heavy-ion physics.
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PRL 126, 242301 (2021) 

Combining different 𝛿𝑓 results using Bayesian Model Averaging

PRL 126, 242301 (2021) 

• The constraints on 𝜁/𝑠 and 
𝜂/𝑠 from three different 
models

• Grad’s 𝛿f (blue) 

• Chapman-Enskog 𝛿𝑓 (red)

• Pratt-Torrieri-Bernhard 
model (green) 



• Modern simulations of heavy-ion collisions rely on a combination of relativistic 
dissipative fluid dynamics and far-off-equilibrium Boltzmann transport.

• Using hydrodynamics and Boltzmann transport, constraints on the QGP 
𝜁

𝑠
(𝑇) and 

𝜂

𝑠
(𝑇)

were obtained. 

• These constraints are made more reliable by
• Including multiple systems (RHIC and LHC) 

• Including an important theoretical systematic uncertainty 𝛿𝑓 along with Bayesian Model Averaging 

when extracting 
𝜁

𝑠
(𝑇) and 

𝜂

𝑠
(𝑇). 

• In the future, a more holistic Bayesian analysis using both hadrons as well as 
electromagnetic (EM) radiation will yield  better constraints:

•
𝜁

𝑠
(𝑇) and 

𝜂

𝑠
𝑇 [PRC 93, 044906 (2016); PRC 98, 014902 (2018); PRC 101, 044904 (2020)]

• second order transport coefficients (e. g. 𝜏𝜋) and 𝛿𝑇𝜇𝜈 initial conditions [PRC 94, 014904 (2016)]

41

Conclusion and Outlook



Backup
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• Obtained an allocation of  several 
million core-hours on Stampede 2 at 
Texas Advanced Computing Center

• Software setup, testing, and 
calculations are done over a 2-year 
period

• The simulations results used to train 
a Gaussian Process Emulator (GPE) 
that efficiently interpolates between 
calculated results 

• The acceleration provided by the 
GPE is crucial to obtain the Bayesian 
Posterior.

43

Supercomputers used to perform calculations



Evolution of the particle composition at different 𝑠
Parton distribution function (PDF) in a proton

44

• The relative contribution of gluons inside a proton ↑ as ↑ 𝑠
• This relative excess of gluons persists once nuclear PDFs are used.

𝑠 increases

− t = −Q2 = E 2 − p2

𝑝

𝑒−𝑒−
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A modern approach to classical relativistic fluid dynamics

• As a solution to the classical relativistic Liouville equation on an 𝑛-particle phase space 
distribution doesn’t yet exist ⇒ approximations are in order.
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A modern approach to classical relativistic fluid dynamics

• As a solution to the classical relativistic Liouville equation on an 𝑛-particle phase space 
distribution doesn’t yet exist ⇒ approximations are in order.

• Instead of solving for each particle’s distribution in the 𝑛-particle system, one solves for 
𝑛-particle correlation functions (also useful for a QFT formulation).
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A modern approach to classical relativistic fluid dynamics

• As a solution to the classical relativistic Liouville equation on an 𝑛-particle phase space 
distribution doesn’t yet exist ⇒ approximations are in order.

• Instead of solving for each particle’s distribution in the 𝑛-particle system, one solves for 
𝑛-particle correlation functions (also useful for a QFT formulation).
• This gives rise to ordered tower of coupled integro-differential equations in phase space known as 

the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.



48

A modern approach to classical relativistic fluid dynamics

𝑝𝜇𝜕𝜇𝑓𝑝 = 𝐶 𝑓𝑝 ∼ න 𝑑Φ𝑝,𝑘→𝑝′𝑘′
2→2 ℳ𝑝,𝑘→𝑝′𝑘′

2→2
2

𝑓𝑘𝑓𝑘′𝑓𝑝′

• As a solution to the classical relativistic Liouville equation on an 𝑛-particle phase space 
distribution doesn’t yet exist ⇒ approximations are in order.

• Instead of solving for each particle’s distribution in the 𝑛-particle system, one solves for 
𝑛-particle correlation functions (also useful for a QFT formulation).
• This gives rise to ordered tower of coupled integro-differential equations in phase space known as 

the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy, i.e. a systematic expansion scheme.

• Neglecting 𝑛-particle correlations ∀ 𝑛 ≥ 2 ⇒ Boltzmann equation
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• In high-energy collisions (w/ negligible 𝜇𝐵), what is flowing?... That can only be energy 
density 𝜖

• Non-dissipative 𝑇0
𝜇𝜈

can only take the form:

• Including dissipation gives rise to dissipative corrections 𝛿𝑇𝜇𝜈 to 𝑇0
𝜇𝜈

, namely Π and 𝜋𝜇𝜈

• In the Navier-Stokes limit, 
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𝑇𝜇𝜈𝑢𝜈 = 𝜖𝑢𝜇

𝑇0
𝜇𝜈

= 𝜖𝑢𝜇𝑢𝜈 − 𝑃 𝜖 Δ𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃 𝜖 (𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈)

𝑢𝜇 = 𝛾, 𝛾 Ԧ𝛽   where 

 𝛾 = 1 − 𝛽2 −1/2
 and Ԧ𝛽 = Ԧ𝑣/𝑐. Using natural units from how on ⇒ 𝑐 = 1.

𝑇𝜇𝜈 = 𝑇0
𝜇𝜈

+ 𝛿𝑇𝜇𝜈 = 𝑇0
𝜇𝜈

− ΠΔ𝜇𝜈 + 𝜋𝜇𝜈 = 𝜖𝑢𝜇𝑢𝜈 − 𝑃 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈

Π𝑁𝑆 = −𝜁𝜕𝜇𝑢𝜇𝜋𝑁𝑆
𝜇𝜈

= 2𝜂𝜕⟨𝜇𝑢𝜈⟩

Already explained 𝜂… 𝜁 only ∃ in compressible fluids. It’s the response of the fluid to abrupt radial compression. 
• For incompressible fluids, rapid ↑ 𝑃ext would ↑ translational motion of molecules (↑ 𝑇) and 𝜋𝜇𝜈.
• For compressible fluids, rapid ↑ 𝑃ext can also excite rotational and vibrational motion of 

molecules, which is incorporated in Π.

Landau’s flow definition



Relativistic dissipative hydrodynamics from Grad’s expansion

• Relativistic dissipative hydrodynamics

• 𝑃(𝜀) use lattice EoS, and the goal is to constrain 𝜁 and 𝜂 via Bayesian analysis [all transport 
coefficient are set c.f. PRD 85 114047 (2012), PRC 90 024912 (2014)]

• About power counting: the r.h.s. of the PDE for Π and 𝜋𝜇𝜈 contain up to 2nd order terms, in 
powers of two small quantities:

• Knudsen number: 𝐾𝑛 =
𝜆𝑚𝑓𝑝

𝐿
powers in microscopic scale (𝜆𝑚𝑓𝑝) and macroscopic scale (𝐿).

2𝜂𝜎𝜇𝜈: 𝜂 ∼ 𝜆𝑚𝑓𝑝 while 𝜎𝜇𝜈 = 𝜕⟨𝜇𝑢𝜈⟩ ∼
1

𝐿
⇒ 𝐾𝜋 = 2𝜂𝜎𝜇𝜈 ≪ 1 is first order 𝐾𝜋 and so is 𝐾Π = −𝜁𝜃 ≪ 1.
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𝜕𝜇  𝑇𝜇𝜈 = 0

𝑇𝜇𝜈 = 𝜀𝑢𝜇𝑢𝜈 − 𝑃 𝜀 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈

Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 , 𝜃 = 𝜕𝜇𝑢𝜇𝜎𝜇𝜈 = 𝜕⟨𝜇𝑢𝜈⟩,

[J. Phys. G: Nucl. Part. Phys. 41, 124004 (2014)]

𝜏𝜋 ሶ𝜋〈𝜇𝜈〉+𝜋𝜇𝜈= 2𝜂𝜎𝜇𝜈 − 𝛿𝜋𝜋𝜋𝜇𝜈𝜃 + 𝜙7𝜋𝛼
〈𝜇

𝜋
𝜈〉𝛼

                         −𝜏𝜋𝜋𝜋𝛼
〈𝜇

𝜎𝛼
𝜈〉

+ 𝜆𝜋ΠΠ𝜎𝜇𝜈

𝜏Π
ሶΠ + Π = −𝜁𝜃 − 𝛿ΠΠΠ𝜃 + 𝜆Π𝜋𝜋𝜇𝜈𝜎𝜇𝜈

Boltzmann equation gives
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⇒ 𝐾𝜋 = 2𝜂𝜎𝜇𝜈 ≪ 1 is first order 𝐾𝜋 and so is 𝐾Π = −𝜁𝜃 ≪ 1.

• inverse Reynolds number: counts powers of dissipative forces over equilibrium  forces: Π ≪ 𝑃, so Π is 

first order in 𝑅Π
−1 =

Π

𝑃
≪ 1 and so is 𝑅𝜋

−1 =
𝜋𝜇𝜈

𝑃
≪ 1.
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Π
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• In EoM for Π, 𝜋𝜇𝜈 above, two kinds of second order terms ∃: 𝛿ΠΠΠ𝜃 ∼ 𝐾Π𝑅Π
−1 while 𝜙7𝜋𝛼

〈𝜇
𝜋

𝜈〉𝛼
∼ 𝑅𝜋

−2
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• Bulk and shear viscosities were parametrized using 4-parameter functions
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Bayesian Prior for bulk (𝜁/𝑠) and shear (𝜂/𝑠) viscosities

𝜂

𝑠
𝑇 = 𝑎low 𝑇 − 𝑇𝜂 Θ 𝑇𝜂 − 𝑇 +

𝜂

𝑠 kink

+𝑎high 𝑇 − 𝑇𝜂 Θ T − T𝜂

Λ = 𝑤𝜁 1 + 𝜆𝜁 𝑇 − 𝑇𝜁  

𝜁

𝑠
𝑇 =

𝜁
𝑠 max

Λ2

Λ2 + 𝑇 − 𝑇𝜁
2
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