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High energy nuclear collisions & nuclear equation of state
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Evolution of the nuclear medium as seen through jets
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Evolution of the nuclear medium as seen through jets
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* To help simulate these different aspects of heavy-ion collisions, the JETSCAPE
(Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope)
framework was used.



Nuclear equation of state in thermal equilibrium

* T/sSyn = more gluons = n,; ~nz; = ug = 0

e | \/syny = more valance quarks = ug > 0 Lattice QCD (L-QCD) equation of state (EoS)
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Overview of fluid dynamics

* P(T) can be used to describe fluids in perfect thermal equilibrium

* |s a perfect thermal equilibrium created after a nucleus-nucleus collision?
* Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it’s dissipative or viscous
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Overview of fluid dynamics

* P(T) can be used to describe fluids in perfect thermal equilibrium

* |s a perfect thermal equilibrium created after a nucleus-nucleus collision?
* Extensive studies revealed that the QGP fluid is out-of-equilibrium, i.e. it’s dissipative or viscous

* Fluid perturbations and dissipation:

Wave propagation of
perturbations at speed of

sound ¢,
A
. > 5 4k
Pert.«x exp |i(cskt — k - X) ———kt

3s 2T
_ )
Y

Decay/Dissipation
of perturbations

* Specific shear viscosity 17/s is a transport coefficient
* 1 shear viscosity
* s entropy density ,

\ 4

‘|'

* 77 introduces friction between fluid layers



An irreducible tensor decomposition of hydrodynamics

* In high-energy collisions (w/ negligible ug), what is flowing?... That can only be energy
density €, mass density is inappropriate: pair production & annihilation!
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An irreducible tensor decomposition of hydrodynamics
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An irreducible tensor decomposition of hydrodynamics
* In high-energy collisions (w/ negligible ug), what is flowing?... That can only be energy
density €
ut = (y, yﬁ) where

T u, = euH
14 2 _1/2 =g - . .
Yy = (1 - f ) and f = v/c. Using natural units fromnowon=c =1 =h = kg

Landau’s flow definition

* Non-dissipative Téw can only take the form:
Ty = eufu” — P(e)A*Y = eutu’ — P(e)(gh’ — utu)

* Including dissipation gives rise to dissipative corrections 6 T*" to T(fw, namely IT and T#V
TR = T3 4+ 8T =T} — IIAWY + 'V = eutu” — (P + TDAHY + iV

where the viscous pressures are decomposed in terms of irreducible tensors, namely

radial deformations angular deformations

— _ Iy _ 1 1
I 3A T — P(€) ThV = T{W) = A% T = [E (A’éAE + AZN&) —gN“’Aaﬁ T*B

w/ n{f = 0 and u, 7" =0

* The EoM for Il and *" are from the Boltzmann equation.



H. Grad moment expansion of the Boltzmann equation

* Expanding the f, in the Boltzmann equation p#d, f,, = C[f,] w/ irreducible moments
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H. Grad moment expansion of the Boltzmann equation

* Expanding the f, in the Boltzmann equation p#d, f,, = C[f,] w/ irreducible moments
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H. Grad moment expansion of the Bo

* Expanding the f, in the Boltzmann equation p*#d, f, = C
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H. Grad moment expansion of the Boltzmann equation

* Expanding the f, in the Boltzmann equation p#d, f,, = C[f,] w/ irreducible moments
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H. Grad moment expansion of the Boltzmann equation

* Expanding the f, in the Boltzmann equation p#d, f,, = C[f,] w/ irreducible moments
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* For an ideal fluid (i.e., ideal hydrodynamics)
1 Bose — Einstein

d3p ~1
= HpVY — pu _ a=1:0 Boltzmann
T j @130 P fop W/ fop [exp( - ,u) + a] {

—1 Fermi — Dirac

* While the EoM for monopole and quadrupole deformations use Boltzmann equation

d3p



Relativistic dissipative hydrodynamics from Grad’s expansion

* Relativistic dissipative hydrodynamics

d, TH =0 P (&) use lattice QCD EoS
THY = gutu? — [P(e) + IT]A*Y + HY

ARV = gtV —utyV

* The expanding the Boltzmann equation p*d, f,, = C[fp] using 4 fi;  up to rank-2 tensors gives EoM
for IT and mHY:

THH + Il = —(8 — 61'[1'[1_[8 + AHTL-TL'HVO'HV + ---
0 = o, ut

O'.u'v - 6<Huv>
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T,V 4tV = 2nohV — 5. THV 0 + qhné"‘nv — T,mnéuagr/) + A pglla®’ + -



Relativistic dissipative hydrodynamics from Grad’s expansion

* Relativistic dissipative hydrodynamics

d, TH =0 P (&) use lattice QCD EoS
THY = gutu? — [P(e) + IT]A*Y + HY

ARV = gtV —utyV

* The expanding the Boltzmann equation p*d, f,, = C[fp] using 4 fi;  up to rank-2 tensors gives EoM
for IT and mHY:

THH + Il = —(8 — 61'[1'[1_[8 + AHTL-TL'HVO'HV + ---
0 = o, ut

O'.u'v - 6<Huv>

Ya

T,V 4tV = 2nohV — 5. THV 0 + qhné"‘nv — T,mnéuagr/) + A pglla®’ + -

* The goal is to constrain { and 1 via Bayesian analysis [all transport coefficient are set c.f. PRD 85
114047 (2012), PRC 90 024912 (2014)]



Relativistic dissipative hydrodynamics

* Ase l = Amfp T. Once Amsp ~ L, the hydrodynamical approximation breaks down
= the full Boltzmann equation must be solved.
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Relativistic dissipative hydrodynamics

* Ase l = Amfp T. Once Amsp ~ L, the hydrodynamical approximation breaks down
= the full Boltzmann equation must be solved.

* Converting fluid degrees of freedom to particle distributions via the zA
Cooper-Frye prescription n

d3N 1 '
pO d3p = (27-[)3 _[ dgzﬂp“(fo + 6fl'[ + 6fn) fO — g[eXP(E/T) + a]_l

 Grad’s expansion, using 8f /f, < 1, yields j\_
y

pupvn#v

Ofe = fo(1 + afo)Anpuanﬂv = fo(1 +afo) 2(e+P)T?

5fn = fo(1+ afo)H(AE(P -u)? + ATmz)

d3
Ap, Ap x jﬁ (p-w)m(—p-A-p)*fo(1 +af,) thermodynamicalintegrals



Relativistic dissipative hydrodynamics

* Ase l = Amfp T. Once Amsp ~ L, the hydrodynamical approximation breaks down
= the full Boltzmann equation must be solved.

* Converting fluid degrees of freedom to particle distributions via the zA
Cooper—Frye prescription n
3 U — -1
p d3p (27_[)3 j d Zup (fO + 6fl_l + 6f7‘[) fO g[exp(E/T) + Cl] Jys
* An alternative to the Grad expansion, Chapman-Enskog expansion j\_
uses small gradients (i.e. flow, ug, ...) as expansion parameter 4
(6f/fo <1)
d3p
Pubvy r—
8fr = fo(1 +afo) 34 u; Jrq % | s @ W TP A DY fo(1+ afy)

A- d3
6fn = fo+ afo) 5 | T ~oms|i AT [ s @0 b 8D ol + )



Relativistic dissipative hydrodynamics

* Ase l = Amfp T. Once Amsp ~ L, the hydrodynamical approximation breaks down
= the full Boltzmann equation must be solved.

* Converting fluid degrees of freedom to particle distributions via the zA
Cooper—Frye prescription n
3 U — -1
p d3p (27_[)3 j d Zup (fO + 6fl_l + 6f7‘[) fO g[exp(E/T) + Cl] Jys
* An alternative to the Grad expansion, Chapman-Enskog expansion j\_
uses small gradients (i.e. flow, ug, ...) as expansion parameter 4
pupyTH d°p 2
Sfe = fo(1 + afy) Zé‘p :L)] Jra % | Gryap0 (p-w)™*(=p-A-p)fo(1+afp)
(p-w)F A- d>
Sfa = foll+af) 5 |5 ~ros|i BT | Gy 0 WMD) oL+ af)

* Note that Chapman-Enskog expansion gives the same equations of motion for Il and m#Y
as Grad’s moments, however with different transport coefficients.



Relativistic dissipative hydrodynamics

* Converting fluid degrees of freedom to particle distributions via the z)
Cooper-Frye prescription "
N1 oy S
p = ub
d3p (2m)3 o5
sf .. . e
. Iff— ~1 is present, a resummed expansion follows the ansatz ;/ >
0
suggested by Pratt-Torrieri-Bernhard
Zn \/|}3r|2 + m?2 ! 1 Bose — Einstein
f = det(\) exp T + a a=10 Boltzmann
—1 Fermi — Dirac
[T+ P(¢) p'=A"1p
nmn= L21 A=(1+A )S_I_M d3p
Y WE T 20, Jrq & )P0 (0w 2(=p-A-p)fo(1+ afy)

L, d’p (p-w)2(—p-A-p)if
rq (Zn)spo




Relativistic dissipative hydrodynamics

* Converting fluid degrees of freedom to particle distributions via the z)
Cooper-Frye prescription "

o N _ 1 j 3%, phf Q
PO = p
d3p (27-[)3 U 5

0
. . 0)
* The approximations for f are: V\.
* Grad moment approximation (up to 2"® moment) linearizes f — f, + 6f
* Chapman-Enskog (small) gradient approximation linearizes f = fy + 6f

* Pratt-Torrieri-Bernhard deformed (thermal-like) distribution (non-linear f)

* The goal is to investigate the constraints on the shear (1) and bulk ({) viscosity from measurements of

d*N . , .
p° 23, Using various hadrons & contrast various f results.



A measure of anisotropic flow (vy,)

* Elliptic Flow
- A nucleus-nucleus collision is typically not head on;

an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is
introduced, where 0-10% being the 10% most head-on
collisions, while 40-50% being semi-peripheral collisions
shown.

ylk Z
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A measure of anisotropic flow (vy,)

* Elliptic Flow
- A nucleus-nucleus collision is typically not head on;

y z an almond-shape region of matter is created.
- To quantify this almond-shape region, the centrality is
introduced, where 0-10% being the 10% most head-on

7”\'1/7;/_ collisions, while 40-50% being semi-peripheral collisions
: shown.,
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A measure of anisotropic flow (vy,)

* Elliptic Flow

y“

- A nucleus-nucleus collision is typically not head on;

an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is
introduced, where 0-10% being the 10% most head-on
collisions, while 40-50% being semi-peripheral collisions
shown.

* To describe the angular (¢p) momentum distribution (in x-y plane, i.e. p,), use a Fourier
decomposition (i.e. flow coefficients) v,

dN

1 dN

dMdn,p,dp,d¢  2mdMdn,p, dp,

1 E, + p”
1+ z v,cos(ng) Np = 5 Log B, — 7

n

* Second Fourier coefficient: elliptic flow (v,) is the largest.
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A measure of anisotropic flow (vy,)

* Elliptic Flow
- A nucleus-nucleus collision is typically not head on;

an almond-shape region of matter is created.

- To quantify this almond-shape region, the centrality is
introduced, where 0-10% being the 10% most head-on
collisions, while 40-50% being semi-peripheral collisions
shown.

y“

To describe the angular (¢p) momentum distribution (in x-y plane, i.e. p, ), use a Fourier
decomposition (i.e. flow coefficients) v,

dN 1 dN {4 z (n) . [
= V,,COS(Nn = —~LO
dMdn,pydpdp  2m dMdn,p dp, " » =28, p?

n

Second Fourier coefficient: elliptic flow (v,) is the largest.

* The more circular the p-distribution = smaller v,, while the more elliptical = larger the v,.
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We

A recent Bayesian analysis constraining g and
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* Constraints using the Pratt-Torrieri-Bernhard §f ansatz
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Modelling specific bulk ({/s) and shear (n/s) viscosities

* Bulk and shear viscosities were parametrized using 4-parameter functions
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Comparisons w/ experimental data using Bayesian calibration
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Comparisons w/ experimental data using Bayesian calibration
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Comparisons w/ experimental data using Bayesian calibration

Observables Posterior : Grad
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Combining different 8f results using Bayesian Model Averaging
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Combining different 0f results using Bayesian Model Averaging

BMA . _
0.4 4 N\t 1Grad .+*{ * The constraints on {/s and
JETSLAFE ::'(P:'EB n/s from three different
0.3 - g A models
" e Grad’s 6f (blue)
< 0.2 * Chapman-Enskog 6f (red)
S _- * Pratt-Torrieri-Bernhard
0.1 - i model (green)
0.00 F===—""" 0.0~ e~
0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35
T [GeV] T [GeV]

* Computing the Bayes factor (i.e. Bayesian evidence) allows to say that there are
* 5000:1 odds that the Grad model is better than the Chapman-Enskog model, or 3.6 observation.
* 3:1 odds that the Grad model is better than the Pratt-Torrieri-Bernhard model, or a 0.60 observation.

* Combining the three-models in proportion 5000:2000:1 using Bayesian Model Averaging (BMA),
yields the robust constraints in orange. This is the first use of BMA in heavy-ion physics.
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Conclusion and Outlook

* Modern simulations of heavy-ion collisions rely on a combination of relativistic
dissipative fluid dynamics and far-off-equilibrium Boltzmann transport.

* Using hydrodynamics and Boltzmann transport, constraints on the QGP % (T) and g (T)
were obtained.
* These constraints are made more reliable by
* Including multiple systems (RHIC and LHC)

* Including an important theoretical systematic uncertainty 6f along with Bayesian Model Averaging
when extracting g (T) and g (T).

* |n the future, a more holistic Bayesian analysis using both hadrons as well as
electromagnetic (EM) radiation will yield better constraints:

. E(T) and g (T)

 second order transport coefficients (e.g.t;) and 6THV initial conditions



Backup



Supercomputers used to perform calculations

* Obtained an allocation of several
million core-hours on Stampede 2 at
Texas Advanced Computing Center

» Software setup, testing, and
calculations are done over a 2-year
period

* The simulations results used to train
a Gaussian Process Emulator (GPE)
that efficiently interpolates between
calculated results

* The acceleration provided by the
GPE is crucial to obtain the Bayesian
Posterior.
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Evolution of the particle composition at different /s

Parton distribution function (PDF) in a proton

. H1 and ZEUS (prel.) H1 and ZEUS (prel.)
1
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S xg/20

08| .;E:" 08

! HERAPDF1.0 - xg (x 0.05—— HERAPDF1.0

[ total uncertainty . [ total uncertainty

0.6 - ======. How energy data 0.6 =====-= +Hlow energy data

RT VFN STandard RT VFN STandard

xg/ 10 |

x5 (x 0.05)

A 4

HERA Inclusive Working Group

. 02
02 \/s increases
0
104 1 10 1

* The relative contribution of gluons inside a proton T as T +/s
* This relative excess of gluons persists once nuclear PDFs are used.
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* As a solution to the classical relativistic Liouville equation on an n-particle phase space
distribution doesn’t yet exist = approximations are in order.

* Instead of solving for each particle’s distribution in the n-particle system, one solves for
n-particle correlation functions (also useful for a QFT formulation).
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* Expanding the Boltzmann equation up to second moment (rank-2 tensor) gives

conservation equations of fluid dynamics .
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9,T*" =0 TH = (ptp") = J 2P P e

* Boltzmann eq also EoMs for dissipative dofs...



An irreducible tensor decomposition of hydrodynamics
In high-energy collisions (w/ negligible ug), what is flowing?... That can only be energy
density €
ut = (y, yﬁ) where

T u, = eut
14 2 _1/2 =g - . .
Yy = (1 - f ) and § = v/c. Using natural units from how on = ¢ = 1.

Landau’s flow definition
Non-dissipative Téw can only take the form:
Ty = eufu” — P(e)A*Y = eutu’ — P(e)(gh’ — utu)
Including dissipation gives rise to dissipative corrections 6T*V to T(fw, namely II and m#VY
TR = T3 4+ 8T =T} — IIAWY + 'V = eutu” — (P + TDAHY + iV
In the Navier-Stokes limit,
nl‘\% = 2n0HuV ys = —{d,u”

Already explained 7... ¢ only 3 in compressible fluids. It’s the response of the fluid to abrupt radial compression.
* Forincompressible fluids, rapid T P.4 would T translational motion of molecules (T T) and T*".
* For compressible fluids, rapid T P,y can also excite rotational and vibrational motion of
molecules, which is incorporated in II.



Relativistic dissipative hydrodynamics from Grad’s expansion

* Relativistic dissipative hydrodynamics Boltzmann equation gives

a.u T.UV =0 THH + Il = —60 — 51'[1‘[1_[0 + /11'[7-[7'[“1/0'

Uy
THY = sutuv — [P(e) + IT|A*Y + iV
[P(e) ] T, MV gtV = 2notv — §_ "o + c,b77t<” via

ARV = guv T uuuv’ otV = a<ﬂuV)r 0 = aﬂuu —'l'n-n-T[é(”O'a + /171'1'11_[0'1“/

* P(¢) use lattice EoS, and the goal is to constrain { and 1 via Bayesian analysis [all transport
coefficient are set c.f. PRD 85 114047 (2012), PRC 90 024912 (2014)]

« About power counting: the r.h.s. of the PDE for II and m#V contain up to 2" order terms, in
powers of two small quantities:

’1fp

* Knudsen number: K, powers in mlcroscoplc scale (4;,rp) and macroscopic scale (L).

2natV:n ~ Adprp while a“v = 9y ~ = :> K, = 2no®V K 1isfirst order K; and sois K = —{6 « 1.
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first order in Rg! =
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* Relativistic dissipative hydrodynamics Boltzmann equation gives

a.u T.UV =0 THH + Il = —60 — 51‘11‘[1_[0 + Annn’“’aw
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powers of two small quantities:
’1 fp

* Knudsen number: K,
2natV:n ~ Adprp while a“v = 9y ~ = :> K, = 2no®V K 1isfirst order K; and sois K = —{6 « 1.

powers in mlcroscoplc scale (4;,rp) and macroscopic scale (L).

* inverse Reynolds number: counts powers of dissipative forces over equilibrium forces: I1 «< P, so Il is
uv
i |<< landsois R;1 = ln L« 1.

first order in Rg! =

* In EoM for I, m*Y above, two kinds of second order terms 3: 81160 ~ KRt while gb7n§r“7tv>“ ~ R;?



Bayesian Prior for bulk ({/s) and shear (n/s) viscosities

* Bulk and shear viscosities were parametrized using 4-parameter functions
PRC 103 054904 (2021)
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temperature of (7/s) kink
(n/s) at kink

low temp. slope of (/s)
high temp. slope of (1/5s)
shear relaxation time factor
maximum of ({/s)
temperature of (¢/s) peak
width of ({/s) peak
asymmetry of ({/s) peak

Z(T) = alow(T - TU)G(TU B T) * (z)kink
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+apigh(T — T,)O(T — T
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(1/8)kink
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we¢
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[0.13, 0.3] GeV
[0.01,0.2]

[-2, 1] GevV—1
[-1,2] GeV—!

[2, 8]

[0.01, 0.25]
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