Apricot model is FCN Robust-dawn is unconditionalized

Nov 17th

Robust-dawn is unconditionalized. Every other model is conditionalized

LL(trained) = 654.0, LL(Rdm) = -2666.0

Apricot-terrain-235

Polished-night-232

Faithful-cosmos-237

Dataset 2 🗖 GT := Recon **5** Samples 10³ Histogram 10⁵ 10¹ 1.0 0.2 0.4 0.6 0.8 Sparsity Index

Robust-dawn-236

LL(trained) = -357.0, LL(Rdm) = -2722.0 LL(trained RBM data) = 351.0, LL(Rdm RBM data) = -726.0

We used fast stein correction for different temperatures. The method doesn't seem robust. The intuition behind this failure is that the method struggles if the two Boltzmann distributions don't overlap

- QVAE
 - Architectures
 - CNN
 - FCN
 - Energy incidence
 - Condition on encoder and decoder
 - Condition on encoder
 - Unconditionalized
 - Modulated energy => Can lead to learning how to modulate more features, position of voxels, angles, etc.
 - Results/metrics
 - Energy histogram
 - Sparsity histogram
 - Conditionalized energy and sparsity histogram (NOT GOOD)
- RBM
 - Topology
 - Chimera-like
 - Pegasus
 - Metrics
 - Energy distribution for encoded and RBM Gibbs samples
 - Zais and Zrais estimates for partition function => log-likelihood of model
 - Dwave
 - Sehmi's method
 - Fast stein. Not robust but could be helpful?
 - Hao's method
- Theory. Work in progress