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® Path-integral approach for derivation of nuclear forces
® Symmetry preserving regularization

® Status report on construction of 3N interactions



Path-Integral Framework
for Derivation of Nuclear Forces

HK, Epelbaum, arXiv:2311.10893



Why a new Framework?

Difficulties in formulation of regularized chiral EFT

® Regularization should preserve chiral and gauge symmetries
® Regularization should not affect long-range pion physics

Pion-propagator in Euclidean space: g = 6]3 + 6112 + 6122 T q32
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all 1/A-corrections are short-range interactions

qo - dependence in exponential requires second and higher order time-derivatives
In pion field in the chiral Lagrangian

~>» Canonical guantization of the regularized theory becomes difficult
(Ostrogradski - approach, Constrains, ...)



Canonical vs Path-Integral Quantization
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o

Canonical Quantization of QFT
Hamiltonian & Hilbert space

Creation/annihilation operators

Time-ordered perturbation theory

~

)

-

o

Path-Integral Quantization of QFT
Lagrangian & action
Summation over all classical paths

Loop expansion & Feynman rules

~

® Path-Integral approach is a natural choice in pionic and single-nucleon sector

Gasser, Leutwyler, Annals Phys. 158 (1984) 142;
Bernard, Kaiser, Kambor, MeiBBner, Nucl. Phys. B 388 (1992) 315

® In two - and more - nucleon sector Weinberg used canonical quantization language

Weinberg Nucl. Phys. B 362 (1991) 3

In using old-fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of

canonical quantization to the leading terms in (1) and (9) yields the total

Can we choose a formulation where we can work with the Lagrangian?



Path-Integral over Nucleons and Pions

We start with generating functional:

Zn",nl = J[DNT][DN] [Drlexp <i Jd“x(sz + 7T (XON(x) + N’f(x)n(x))>

Yukawa toy-model:
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® Perform a Gaussian path-integral over the pion fields

Znt,nl = [ [DN'][DN lexp <i Sy +i [d‘*x(;ﬂ(x)N(x) + N (on(x)) >

0 V2 . |
S — | v NT(x (i— +—>N(x) — Voo Non-instant one-pion-exchange
N J ) 0xy 2m w €= interaction
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Voy = — % Jd‘*x d*yV - [INT(0)5t|N@x) Apx — y) V- [NT(»)az| N(y)
d4q e—iq-x
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with non-instant pion propagator: Ax(x) = [



Instant Interactions from Path-Integral

To transform V,,, into an instant form we rewrite a pion propagator
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In coordinate space this corresponds to A (x) = Ay(x) — ﬁAFs(X) with
X0

Ao [ d*q e=i* » )[ d’q 77 o J dlq  e7i*

X) = — = — o(x, : X) =
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® The decomposition A ,(x) = Ag(x) — ﬁAFS(x) can be generalized
X0

d4

G(x) = J % c)] 4e‘iq'x(~}(q§, g*) and G(q3, ¢*) is differentiable at gy = 0
T

4

d*q 4 igs G(q5.9%) — G(0.47)

Defining Gg(x) = J e '97G(0,q%) and Gpg(x) = J

m)* (2m)* 45

62
- [G(x) = Gy(x) — EGFS(X)}

0




Instant Interactions from Path-Integral

2
Perform an instant decomposition of the pion propagator A .(x) = A(x) — ﬁAFS(x)

X
7 0

Voy = — % J'd4x d4yvx : [NT(X)ET] Nx) Ap(x —y) Vy : [NT()/)ET] N(y)

> Vv = Vorg + Vis

2
Vore = — % [d“x d*yV - [IN"0)67|N@x) Agx —y) V, - [NT(»)67|N(y)  is instant

2 — = 62 g -
Vis = % Jd4x d*yV, - |N"(x)57| N(x) —SApsE =NV, N'(»)az|N(y) is non-instant
0

Vi IS time-derivative dependent and thus can be eliminated
by a non-polynomial field redefinition

2 . 0 _,
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Instant Interactions from Path-Integral

Non-local field transformations remove time-derivative dependent two-nucleon
interactions but generate time-derivative dependent three-nucleon interactions.

These contributions can be eliminated by similar field transformations

.
OV, N) >exp <i Syov vy + i Id“x(n*(x)N(NT N)@) + NV, N on() >

v 2 [iovtion
Z[n',nl , [DN "][DN’] det < SOV

- ¥ /
~ | [DNT|[DN] det ( oW, V) ) exp <i Snoviay + i Jd“x(;ﬂ(x)zv’(x) + NT(0)n(x)) )

B 5N, N)
0

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.

4 & . 0 Vz / 4
Snoviay = |d XN ()| i oxg T o N'(x) — Vopg+ 0(g7)

2
Vopp = — <5 Jd“x d*yV .- [INT(0)ot|N'(x) Agx—y) V- [NT(»o7|N'(y)

R Instant one-pion-exchange interaction



Generalization to Chiral EFT

We start with generating functional:

ZIn',n) = J [DNT][DN][Dzlexp (z‘ [d“x(fzﬂ + Lov+ Ly + Lawn + 1T ON@) + N (0n(x)) )

® Integrate over pion fields via loop-expansion of the action

—>» expansion of the action around the classical pion solution

® Perform instant decomposition of the remaining interactions between nucleons

® Perform nucleon-field redefinitions to eliminate non-instant part of the interaction

® Calculate functional determinant to get one-loop corrections to few-nucleon forces



Connection to Unitary Transformations

Previous derivation of nuclear forces was based on unitary transformation technique

path-integral approach canonical quantization approach

Field transformations (FT) within , ? . Unitary transformations (UT) within
>

® Interactions generated by FT have ® Interactions generated by UT can be
always a form of heavy-baryon like matched by 4-dim loop-integrals,
tree-level or 4-dim loop-integrals only if some unitary phases are fixed

—3» UT technique is more flexible

In practical calculation we do not want to explore the flexibility of UT in constructing
non-renormalizable nuclear forces

® FT which don’t generate interactions ® Allows to study unitary ambiguities
with time-derivatives describe off-shell of e.qg. relativistic corrections
ambiguities

[UT & FT path-integral approach lead to the same chiral EFT nuclear forces up to N4LOj

Fazit: Path-integral formulation of nuclear forces is as powerful as UT technique,
however it allows consideration of a wider class of theories



Symmetry Preserving Regulator

HK, Epelbaum, arXiv:2312.13932



Gradient-Flow Equation (GFE)

Yang-Mills gradient flow in QCD: Liischer, JHEP 04 (2013) 123

aTBﬂ = DVGW with B, | o= A, & GW = aﬂBy — dyBﬂ +1B8,,B,]
Bﬂ is a regularized gluon field

® Apply this idea to ChPT: HK, Epelbaum, arXiv:2312.13932

(Proposed in various talks by D. Kaplan for nuclear forces)

Introduce a smoothed pion field W with W| _ = U satisfying GFE

Eafw = i wEOM(z) w with w = /W and EOM(7) = [D,,, w,] + % ¥ — iTr( ;(_)}

W, = i(wT(dﬂ —ir,)w—w(, — ilM)WT), v =wiyw"—wy'w, y =2B(s+ip)
Note: The shape of regularization is dictated by the choice of the right-hand side of GFE

® Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN



Properties under Chiral Transformation
Replace all pion fields in pion-nucleon Lagrangians Effrl), s ng\)]: U—-> W
32\), = NT<DO +gu- S>N — NT<DV?, +gw- S)N

Chiral transformation: by induction, one can show

U— RULT —>» W — RWLT

® Regularized pion fields transform under 7 - independent transformations

® Nucleon fields transform in 7 - dependent way

N— KN, K=v/LUR'RJU =» N-KN, K,=VLWRRYW




Gradient-Flow Equation

Analytic solution is possible of 1/F - expanded gradient flow equation:

2 00
W=1+ir- g1 - ag?) - = 1+G—2a)¢2 FOWO), fy= Y ="
n=0

In the absence of external sources we have

0, — (050, — M*)|pV(x, 1) =0, ¢ V(x,0) = m,(x)

T

0, — (@20F = M| P x, D) = (1 = 20)0,6D - 9,6 V" — 4ad, D - p 10,V
M2
+—-(1 =42 - 0, ¢,7(c0) =0

lterative solution in momentum space: $"(q.7) = Jd“x e p\"(x, 7)

~ (2 M2) ~
PV(q) = e T O7(g)

d*q, d'q, dqq
(2n)* 2r)* 2r)*

T
ds e —(T—S)(q2+M2)e =S 2;21 (q]'2+M2)

2n)*5(q — g, — g, — %)J

$O)(q) =
J 0

B 2
X |4aq, - qg;— (1 =2a)q, - g, + 7(1 — 4a)] 7(qy) - 7(q)7,(gs)

Integration over momenta of pion fields with Gaussian prefactor introduces smearing



Ilterative solution in Coordinate Space

— — —

YA u g,
. ﬂ(xﬂ) "’.‘
Vo R ECE
P D) = . i ——" T
5 g 5 : >
0 T 0 T T
t ! 4]

lintegrated over X, t;, 7]
Light-shaded area visualizes smearing in Euclidean space of size ~ /2t
Solid line stands for Green-function:
0, — (030} — M?)|G(x — y, T — 5) = 5(x — y)&(z — 5)
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Regularization for Nuclear Forces

To regularize long-range part of the nuclear forces and currents

® Leave pionic Lagrangians Z;z) & 3;4) unregularized (essential)

® Replace all pion fields in pion-nucleon Lagrangians 35[1), s QS\),: U-> W

3%=NT<DO+gu : S)N—> NT<D$+gw : S)N

—> (

=

_ 2, g2
> ~ e 21(q=+M~)

Fort = m this regulator reproduces SMS regularization of OPE

1

q2+M2



Status Report on 3NF



Status Report on 3N at N3LO

® We calculated all long- and short-range contributions to 3NF & 4NF at N3LO

N ot I *

3NF’s are given in terms of integrals over Schwinger parameters

2n—1rm _ p=d pud
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Dimension of integrals over Schwinger parameters depends on topology

Space +H it e
Momentum 2 1 3
Coordinate 4 1 0




Subtraction Scheme

Choice of the short-range scheme
® NN case: local part of NN force vanishes if distance between nucleons vanishes

—>» leads to natural size of LECs

® 3N case: vanishing of the local part of 3NF is topology dependent

*+_+=Oifr12=00rr23=0 U §-¢=0itr,=0 {59 =0itr,=r;3=0

1 2 3 1 2 3 1 2 3

_____ ><D X

Vanishing of 3NF for any rp = 0 would require inclusion of two-pion-contact terms

Can be achieved by adjustment of D- and E-like terms:

|>< Appear first at N5LO and are expected to be small



Selected Profile Functions

rim - -
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By construction: subtracted & unsubtracted forces differ in the short-range region

At A — oo regularized 3NF reproduce dim. reg. results from Bernard et al. PRC77 (08)
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Short-Range Part on 3NF at N3LO

® Non-locality introduces additional momenta

® To get a finite 3NF in A — oo limit we have to perform 5 additional
field-transformations which include second power of the pion propagator

—» more extensive calculation

Short-range parts are given in terms of 1-dim integrals over Schwinger parameters

o.z;-l\ """""""""""" i Selected structure & configuration c:
o 0.0 j 00
% 02 I G104 03T+ T3 CSJ dAf(4;c¢)
Q [ ] 0
—~ —0.4; ] : : : ]
§ el A=450MeV | € includes momenta in MeV & cosines of angles:
= | Y T
-0.8/ 1|4 ki 923 k341 - ki 91 - 92391 - Koz ky - Goz Ky - kys 923 Ko3
o 5 10 15 20 L i L L 1 L !
yl I 2 3|2 6 2 5 7 9 8




Homework

o * * TPE topology includes pion-nucleon amplitude as a subprocess

<— Pion-nucleon amplitude with gradient-flow regulator depends on c¢;’s

Fit ¢;’s to pion-nucleon sub-threshold coefficients which are determined
from Roy-Steiner equation

[ Calculation of pion-nucleon scattering with gradient-flow regulator required j

® Partial wave decomposition (PWD): K. Hebeler, A. Nogga & R. Skibinski

PWD is computationally more expensive, due to higher dimension of integrals
over Schwinger parameters



Summary

® Path-integral approach for derivation of nuclear forces
® Gradient flow regularization preserves chiral symmetry

® Long- & short-range part of 3NF at N3LO is calculated

QOutlook

® Pion-nucleon scattering with gradient-flow regulator
® Partial wave decomposition

® Symmetry preserving regularized nuclear currents



