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New Algorithms for the Nuclear Many-Body Problem
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In memory of our dear friend and colleague, Rup.  
He is greatly missed. 
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Construct the effective potential order by order
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Contact interactions

Leading order (LO) Next-to-leading order (NLO)

Chiral effective field theory
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Euclidean time projection
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Auxiliary field method



Floating block method

Sarkar, D.L., Meißner, Phys. Rev. Lett. 131, 242503 (2023)
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In the limit of large Euclidean time, we can use quantum Monte Carlo 
calculations to produce the ground state wave function

Suppose that the Hamiltonian depends smoothly on some parameter c.  
We would like to perform eigenvector continuation of the ground state  
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We then need to compute norm matrix elements and Hamiltonian 
matrix elements



and solve the generalized eigenvalue problem
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There is no problem to calculate ratios of Hamiltonian and norm 
matrix elements



But it is difficult to compute the norm matrix elements.  The standard 
approach is to compute the ratio of the norm matrix elements to some 
reference amplitude

But the large exponential factors due to differences in the ground energies 
make the Monte Carlo sampling very difficult.
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Floating block method

The floating block method solves this problem by computing ratios where 
the exponential factors of the ground state energies cancel.
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Sarkar, D.L., Meißner, Phys. Rev. Lett. 131, 242503 (2023)
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In order to compute the phase, we calculate the ratio
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Alpha gas Nuclear liquid

Elhatisari, et al.,  Phys. Rev. Lett. 117, 132501 (2016) 17
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Wave function matching
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Elhatisari, Bovermann, Ma, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, 
M. Kim, Y. Kim, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488



hard repulsive core 
difficult for auxiliary-field 
Monte Carlo calculations

easy for auxiliary-field 
Monte Carlo calculations
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Let us write the eigenenergies and eigenfunctions for the two interactions 
as 

We would like to compute the eigenenergies of HA starting from the 
eigenfunctions of HB and using first-order perturbation theory.
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Not surprisingly, this does not work very well.  The interactions VA and 
VB are quite different.
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Let PR be a projection operator that is nonzero only for separation 
distances r less than R.  

There are many possible choices to complete the unitary transformation.

25

Bovermann, Epelbaum, Krebs, Lähde, D.L., PoS, LATTICE2021

We define a finite-range unitary operator U that vanishes beyond distance 
R.  We require that



The corresponding action of U on the Hamiltonian is 

and the resulting nonlocal interaction is
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Since they are unitarily equivalent, the phase shifts for the original and 
transformed Hamiltonians are exactly the same
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Ground state wave functions
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With wave function matching, we can now compute the eigenenergies 
starting from the eigenfunctions of HB and using first-order perturbation 
theory.



N3LO chiral effective field theory interaction
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Binding energy per nucleon
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Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, 
Y. Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488



32

Charge radius

Elhatisari, Bovermann, Epelbaum, Frame, Hildenbrand, Krebs, Lähde, D.L., Li, Lu, M. Kim, 
Y. Kim, Ma, Meißner, Rupak, Shen, Song, Stellin, arXiv: 2210.17488



Is wave function matching qualitatively different from the similarity 
renormalization group, Vlow-k, or the unitary correlation operator method?
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1D system with two infinitely heavy particles and one light particle
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Difference in the three-body ground state energy gives the induced 
three-body interaction for chosen positions of the infinitely heavy particles.
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Wave function matching in continuous space
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Summary

After an introduction to lattice effective 
field theory, we presented the floating block 
method for quantum Monte Carlo 
simulations.  The floating block method 
allows one to calculate the inner product 
between eigenvectors of different 
Hamiltonians.  We then discussed wave 
function matching.  After this, we 
demonstrated the basic concepts using 
simple examples and applied wave function 
matching to calculations of nuclear 
structure at N3LO in chiral effective field 
theory.  We then discussed some theoretical 
concepts associated with wave function 
matching and described how it can be 
applied in the continuum.
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