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A little negativity

All is not yet well.
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Based on:

Still not published, despite very positive
report . . .
Coming to Phys. Rev. C soon-ish.

Very recent similar paper by BUQEYE:
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Goal: to make Bayesian predictions of scattering observables in ∆-full χEFT
with correlated EFT truncation errors

Ingredients:

1 A method to compute observables (scattering emulators)

2 Input data (NN scattering cross sections)

3 A way to model correlated EFT truncation errors (Gaussian processes)

4 Efficient MCMC sampling (Hamiltonian Monte Carlo)

Resulting in:

5 Posteriors for LECs, predictions of observables
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1. Emulators for NN scattering cross sections

We have developed a new code to compute scattering observables based on
eigenvector continuation (EC) of T -matrix elements1.

T ≈ V (α⃗) +
1

2
b⃗TB−1⃗b (α⃗ : LECs)

where

bi = TiG0V + V G0Ti

Bij = TiG0Tj + TjG0Ti − TiG0V G0Tj − TjG0V G0Ti.

i, j indexes the snapshot (training point).

Implemented in Python. Currently no EM interactions, so limited to np scattering
above 30 MeV2

1Melendez et al., Phys. Lett. B 821 (2021)
2Stoks and De Swart, Phys. Rev. C 42 (1990) & Machleidt, Phys. Rev. C 63 (2001)
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1. Emulation of a differential cross section

Emulator performance when varying just one LEC (C̃np
1S0):
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1. Emulator error compared to experimental error
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Emulator error compared to experimental errors for NNLO emulators with 8 snapshots.
The x axis represents the world database of np scattering data with 0 < Tlab < 290 MeV.
LECs randomized in [−4, 4] in appropriate units.
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1. Speed and gradients through JAX

We need gradients of observables for HMC sampling.

• Automatic differentiation using JAX3

• JAX also provides just-in-time compilation, accelerating execution

With J ≤ 30, we can compute 2,779 cross sections4 in

• ∼ 0.4 s without gradients

• ∼ 1.3 s with gradients

at ∆-NNLO.

Includes evaluation of T -emulators in 87,906 PW channels.

3Bradbury et al., http://github.com/google/jax
4Sub-30 MeV included for benchmarking. CPU: Intel Core i9-12900K.
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2. Data

The data D we employ:

• neutron-proton scattering cross sections, 30 ≤ Tlab ≤ 290 MeV

• Tlab > 290 MeV reserved for validation.
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3. Bayesian inference and predictions

We make predictions of y using a posterior predictive distribution (PPD):

pr(y|D, I) =

∫
pr(y|α⃗, I)pr(α⃗|D, I)dα⃗

For this we need the joint posterior for the LECs pr(α⃗|D, I). Bayes’ theorem:

pr(α⃗|D, I)
Posterior

∝ pr(D|α⃗, I)
Likelihood

× pr(α⃗|I)
Prior

Our priors are grounded in EFT. E.g., Roy-Steiner5 for πN LECs.

5Hoferichter et al., Phys. Rept. 625 (2016), Siemens et al., Phys. Lett. B 770 (2017)
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3. EFT expansion of an observable y

y = yref

k∑

i=0

ci

(
f(p,mπ)

Λb

)

≡Q

i

= yref(c0
LO

+ c2Q
2

NLO
+ c3Q

3

NNLO
+ . . .+ ckQ

k)

Assume ci are normally distributed:

pr(ci|I) ∼ N (0, c̄2)

This leads to a normal distribution for δya:

δy = N (0, σ2), σ2 = c̄2y2ref
Q2(k+1)

1−Q2

aWesolowski et al., J. Phys. G 46 (2019), I. S., licentiate thesis (2021)

Expansion coefficients at
different chiral orders.
(From earlier work.)
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3. Correlated EFT truncation uncertainties

The expansion coefficients ci are correlated across scattering energy and
angle with some finite correlation length.

We use Gaussian processes trained on known expansion coefficients to learn about
correlation lengths and the variance c̄2.6

We find that accounting for correlated EFT uncertainties

• Decreases the effective number of data by a factor of 4–8 (NNLO/NLO)

• Increases the width of marginal LEC posteriors 2–3 times

We find length scales in the ranges 40–120 MeV & 25–45 degrees
and c̄2 ∼ 0.52 (probably underestimated)

6Melendez et al., Phys. Rev. C 100 (2019)
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Mean GP predictions of expansion coefficients for some observables
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4. Sampling high-dimensional spaces with Hamiltonian Monte Carlo

Realistic χEFT potentials feature ∼ 15–30 LECs (or more) −→ must use MCMC.

Random walk MCMC will not work very well in such high-dimensional spaces.
We obtain a guided walk using Hamiltonian Monte Carlo (HMC)7.

HMC exploits gradients of the posterior to efficiently explore the parameter space.

JAX provides the gradients.

7Duane et al., Phys. Lett. B 195(2) (1987)
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4. A computational balancing act

We must weigh computational cost versus quality of the samples:

• HMC increases the computational cost of each MCMC
sample

• But also increases the information density (by decreasing
autocorrelations)

Weighing these factors we have found that8

HMC is ∼ 6 times more efficient than emcee9 in our applications.

8I.S., A. Ekström, C. Forssén, Phys. Rev. C 105 (2022)
9Foreman-Mackey et al., PASP 125 (2013)

14



4. Autocorrelation function for the correlated ∆-NNLO sampling

The autocorrelation function
ρ(h) meaures the correlation
between samples h MCMC steps
apart

• No correlation: ρ(h) = 0

• Full correlation: ρ(h) = 1

• Anti-correlation: ρ(h) < 0
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1Emcee, ∆-less NLO, Svensson et al., PRC 105, 014004 (2022)

Representative for random walk1

HMC (average)

HMC (individual LECs)

HMC provides uncorrelated samples here.
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5. Posteriors for the LECs at NLO and NNLO
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Accounting for correlated errors softens LEC correlations somewhat and
increases the width of the posteriors.
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5. Tensions with Roy-Steiner prior

Comparison between R-S prior (purple contours) and MAP (black dot):
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5. Predicting unseen data

PPDs for np differential cross sections at laboratory
energy 319 MeV. (a) Correlated error model. (b)
Uncorrelated error model.

This prediction is better with an
uncorrelated error model but
several highly similar data sets
are included in the calibration
data. Overfitting!
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Some earlier work
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Outlook

There are lots of future prospects. To name a few:

• Improved EFT error modeling, e.g., accounting for uncertainties in more
hyperparameters simultaneously.

• Simultaneous inference of two- and three-nucleon forces.

• Advances in HMC sampling technology, primarily for ease-of-use but also to
tackle more challenging problems.

• Bayesian predictions of a wide variety of nuclear observables!
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Thank you!

Merci!

Danke!

Tack!


