Charged particles and resonances in finite volume

Sebastian König

TRIUMF Nuclear Theory Workshop, Vancouver, BC

Vancouver, BC, February 27, 2024

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

... for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

Quantum systems in a box

- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...
- ...and impose periodic boundary conditions

Quantum systems in a box

- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...
- ...and impose periodic boundary conditions
- lattice spacing (if any): UV effects; box size: IR effects ~> physics

Relevance of finite-volume relations

Lattice simulations

D. Lee

- **lattice QCD:** few baryons, small volumes
- lattice EFT: larger volumes, many more particles

Beane et al., Prog. Part. Nucl. Phys. **66** 1 (2011); ... Epelbaum et al., PRL **104** 142501 (2010), ...

Relevance of finite-volume relations

Lattice simulations

D. Lee

Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...

Epelbaum et al., PRL 104 142501 (2010), ...

- **lattice QCD:** few baryons, small volumes
- lattice EFT: larger volumes, many more particles

Harmonic oscillator calculations

- infrared basis extrapolation
- Busch formula: extraction of scattering phase shifts

Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020)

More et al, PRC **87** 044326 (2013); ...

Relevance of finite-volume relations

Lattice simulations

D. Lee

Epelbaum et al., PRL 104 142501 (2010), ...

- Iattice QCD: few baryons, small volumes
 Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- **lattice EFT:** larger volumes, many more particles

Harmonic oscillator calculations

- infrared basis extrapolation
- Busch formula: extraction of scattering phase shifts

Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020)

Dedicated finite-volume few-body simulations

More et al, PRC **87** 044326 (2013); ...

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Bound states

SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

SK + Lee, PLB **779** 9 (2018)

H. Yu, SK, D. Lee, PRL 131 212502 (2023)

Bound-state volume dependence

• finite volume affects the binding energy of states: $E_B o E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
, $oldsymbol{A}_\infty$ = ANC

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence SK + Lee, PLB 779 9 (2018)
 - binding momentum $\kappa = \kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N B_A B_{N-A})}$
 - depends on nearest breakup channel: N = A + (N A)
 - asymptotic normalization constant (ANC) A_∞
- general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

Bound-state volume dependence

• finite volume affects the binding energy of states: $E_B \rightarrow E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
, $oldsymbol{A}_\infty$ = ANC

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
 SK + Lee, PLB 779 9 (2018)
 - ▶ binding momentum $\kappa = \kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N B_A B_{N-A})}$
 - depends on nearest breakup channel: N = A + (N A)
 - asymptotic normalization constant (ANC) A_∞
- general prefactor is polynomial in $1/\kappa L$ _{SK et al., PRL 107} 112001 (2011); Annals Phys. 327, 1450 (2012)
- ANCs describe the bound-state wave function at large distances
 - important input quantities for reaction calculations

Charged-particle systems

Most nuclear systems involve multiple charged particles!

Bound-state volume dependence

• finite volume affects the binding energy of states: $E_B o E_B(L)$

$$\Delta E_B(L) \sim - |A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
, $oldsymbol{A}_\infty$ = ANC

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
 SK + Lee, PLB 779 9 (2018)
 - ▶ binding momentum $\kappa = \kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N B_A B_{N-A})}$
 - depends on nearest breakup channel: N = A + (N A)
 - asymptotic normalization constant (ANC) A_∞
- general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
- ANCs describe the bound-state wave function at large distances
 - important input quantities for reaction calculations

N-A

Charged-particle systems

Most nuclear systems involve multiple charged particles!

Charged-particle systems

Most nuclear systems involve multiple charged particles!

• nonrelativistic description with short-range interaction + long-range Coulomb force

$$H = H_0 + V + rac{V_C}{r} \ , \ V_C(r) = rac{\gamma}{r} = rac{2\mulpha Z_1 Z_2}{r}$$

• charged bound-state wavefunctions have Whittaker tails:

$$\psi_\infty(r)\sim W_{-ar\eta,rac{1}{2}}(2\kappa r)/r\sim rac{{
m e}^{-\kappa r}}{(\kappa r)^{ar\eta}}$$

- ► these govern the asymptotic volume dependence
- additional suppression at large distances
- depends on Coulomb strength: $ar\eta=\gamma/(2\kappa)$
- ightarrow for lpha-lpha system: $\gammapprox 0.55~{
 m fm}^{-1}$
- details worked out by graduate student Hang Yu

Yu, Lee, SK, PRL **131** 212502 (2023)

$\textbf{Coulomb} = \textbf{exp} \rightarrow \textbf{Whittaker function?}$

Coulomb = exp \rightarrow Whittaker function?

Yes, but not quite so simple...

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- $\bullet\,$ cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- $\bullet\,$ cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- $\bullet\,$ cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

- short-range interaction easy to extend periodically: $V_L(\mathbf{r}) = \sum_{\mathbf{n}} V(\mathbf{r} + \mathbf{n}L)$
 - \blacktriangleright trivial for finite-range potental V
 - \blacktriangleright converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- $\bullet\,$ cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

Charged-particle volume dependence

- three-dimensional derivation is complicated due to nontrival boundary condition
 - ► can be done with two-step procedure based on formal perturbation theory
 - intricate details worked out by Hang Yu
 - \rightarrow leading result for S-wave states (cubic A_1^+ representation)

$$\Delta E(L) = \underbrace{-\frac{3A_{\infty}^2}{\mu L} \left[W_{-\bar{\eta}, \frac{1}{2}}'(\kappa L) \right]^2}_{\equiv \Delta E_0(L)} + \Delta \tilde{E}(L) + \Delta \tilde{E}'(L) + \mathcal{O}\left[e^{-\sqrt{2}\kappa L} \right]$$
(3D, A_1^+)

Correction terms

- in addition to exponentially suppressed corrections, there are two other terms
- these arise from the Coulomb potential and vanish for $\gamma
 ightarrow 0$
- the perturbative approach makes it possible to derive their behavior

$$\Delta ilde{E}(L), \Delta ilde{E}'(L) = \mathcal{O}\left(rac{ar{\eta}}{(\kappa L)^2}
ight) imes \Delta E_0(L)$$

Yu, Lee, SK, PRL 131 212502 (2023)

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,{
 m Gauss}}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,{
 m Gauss}}(r)\sim rac{1-{
 m e}^{-r^2/R_C^2}}{r}$
 - ▶ this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result				
γ	κ_∞	A_{∞}	L range	κ_∞	A_{∞}			
d = 1								
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284			
2.0	0.861125(9)	4.4740(9)	$12\sim23$	0.860	4.4782			
3.0	0.86108(6)	10.386(2)	$12\sim 20$	0.858	10.435			
d = 3								
1.0	0.8610(3)	5.039(2)	$17\sim 28$	0.861	5.049			
2.0	0.8607(3)	11.71(4)	$15\sim 26$	0.860	11.79			
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31			
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76			
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4			

Numerical checks

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,Gauss}(r) \sim \frac{1 e^{-r^2/R_C^2}}{r}$
 - this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result	
γ	κ_∞	A_{∞}	L range	κ_∞	A_{∞}
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435
1.0	0.8610(3)	5.039(2)	$17\sim 28$	0.861	5.049
2.0	0.8607(3)	11.71(4)	$15\sim 26$	0.860	11.79
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4

- excellent agreement with direct continuum calculations
 - obtained by solving the radial Schrödinger equation

Three-nucleon system: ³He vs. ³H

- consider pionless EFT with SU(4) symmetric contact interaction
- parameters tuned in infinite volume (very large box)
 - \blacktriangleright two-body interaction to produce 1 MeV deuteron
 - three-body interaction to produce physical triton
 - add Coulomb and short-range pp counterterm to also produce physical ³He

- extract proton-deuteron ANC as $A_\infty = 1.44(1)\,{
 m fm}^{-1/2}$
- would be off by 5% with pure short-range volume dependence fit
 - significant effect given that Coulomb strengh $\gamma \sim 0.05\,{
 m fm}^{-1}$ is pretty small here!

Resonances

Klos, SK et al., PRC 98 034004 (2018)

Dietz, SK et al., PRC 105 064002 (2022)

Yapa, SK, PRC 106 014309 (2022)

Yu, Yapa, SK, PRC 109 014316 (2024)

Motivation

original chart: Hergert et al., Phys. Rep. 621 165 (2016)

• FRIB will discover a host of unknown nuclei near the edge of stability

- ▶ among those there are likely exotic states
- ► halos, clusters ~→ few-body resonances

Finite-volume resonance signatures

Lüscher formalism

- finite volume ightarrow discrete energy levels $ightarrow p \cot \delta_0(p) = rac{1}{\pi L} S(E(L))
 ightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

 direct correspondence between phase-shift jump and avoided crossing only for twobody systems, but the spectrum signature carries over to few-body systems
 Klos, SK et al., PRC 98 034004 (2018)

More formal look at resonances

- in stationary scattering theory, resonances are described as generalized eigenstates
 - S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ▶ wave functions are not normalizable (exponentially growing in *r*-space)

Complex scaling method

• one way to circumvent this problem is the complex scaling method:

$$r
ightarrow {
m e}^{{
m i} \phi} r \;\;,\;\;\; p
ightarrow {
m e}^{-{
m i} \phi} p$$

→ "reveals" the resonance regime

Complex-scaled resonance wave functions

• complex scaling suppresses the exponentially growing tail of the wave function

calculations by Nuwan Yapa

More formal look at resonances

- in stationary scattering theory, resonances are described as generalized eigenstates
 - S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ▶ wave functions are not normalizable (exponentially growing in *r*-space)

Complex scaling method

• one way to circumvent this problem is the complex scaling method:

$$r
ightarrow {
m e}^{{
m i} \phi} r \;\;,\;\;\; p
ightarrow {
m e}^{-{
m i} \phi} p$$

→ "reveals" the resonance regime

More formal look at resonances

- in stationary scattering theory, resonances are described as generalized eigenstates
 - S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ▶ wave functions are not normalizable (exponentially growing in *r*-space)

Complex scaling method

• one way to circumvent this problem is the complex scaling method:

Notes

- this particular method is also called "uniform" complex scaling
- essentially, one uses a basis of complex momentum modes

Back to the box

Consider again the peridioc boundary condition...

Back to the box

Consider again the peridioc boundary condition...

...but now in terms of complex-scaled coordinates!

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

• put system into a box, apply peridioc boundary condition along rotated axes

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

• put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

- resonances, like bound states, correspond to isolated S-matrix poles
- complex scaling renders their wave functions normalizable
- we can adapt bound-state techniques to derive their volume dependence

$$\Delta E(L) = rac{3A_\infty^2}{\mu\zeta L} \Bigg[rac{\exp(\mathrm{i}\zeta p_\infty L) + \sqrt{2}\mathrm{exp}(\mathrm{i}\sqrt{2}\zeta p_\infty L) + rac{4\exp(\mathrm{i}\zeta\sqrt{3}p_\infty L)}{3\sqrt{3}L} \Bigg] + \mathcal{O}\left(\mathrm{e}^{\mathrm{i}2\zeta p_\infty L}
ight)$$

- in this equation $\zeta = {
 m e}^{{
 m i}\phi}$, $p_\infty = \sqrt{2\mu E(\infty)}$
- explicit form for leading term (LO) and subleading corrections (NLO)
- note: dependence on volume L and complex-scaling angle ϕ

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC **109** 014316 (2024)

• put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

- resonances, like bound states, correspond to isolated S-matrix poles
- complex scaling renders their wave functions normalizable
- we can adapt bound-state techniques to derive their volume dependence

$$\Delta E(L) = rac{3A_\infty^2}{\mu\zeta L} \Bigg[rac{\exp(\mathrm{i}\zeta p_\infty L) + \sqrt{2}\mathrm{exp}(\mathrm{i}\sqrt{2}\zeta p_\infty L) + rac{4\exp(\mathrm{i}\zeta\sqrt{3}p_\infty L)}{3\sqrt{3}L} \Bigg] + \mathcal{O}\left(\mathrm{e}^{\mathrm{i}2\zeta p_\infty L}
ight)$$

- in this equation $\zeta = {
 m e}^{{
 m i}\phi}$, $p_\infty = \sqrt{2\mu E(\infty)}$
- explicit form for leading term (LO) and subleading corrections (NLO)
- note: dependence on volume L and complex-scaling angle ϕ

Numerical implementation

• DVR method can be adapted to this scenario (scaling of $x, y, z \rightsquigarrow$ scaling of r)

Resonance examples

- two-body calculations are in excellent agreement with derived volume dependence
 - ► S-wave resonance generated via explicit barrier
 - ► P-wave resonance from purely attractive potential

• fitting the *L* dependence yields physical resonance position and lifetime!

More applications

Single-volume bound-state fitting

- bound-state energies normally remain real under complex scaling (strictly true in infinite volume)
- the finite-volume, however, induces a non-zero imaginary part
- $\operatorname{Re} E$ and $\operatorname{Im} E$ oscillate as a function of L
 - ${\scriptstyle \blacktriangleright}$ and also as a function of ϕ
- possible to fit ϕ dependence at fixed volume!

More applications

Single-volume bound-state fitting

- bound-state energies normally remain real under complex scaling (strictly true in infinite volume)
- the finite-volume, however, induces a non-zero imaginary part
- $\operatorname{Re} E$ and $\operatorname{Im} E$ oscillate as a function of L
 - ho and also as a function of ϕ
- possible to fit ϕ dependence at fixed volume!

Three-body resonance

- the exact volume dependence is only known for two-body system
- the complex scaled FV-DVR can however be used to study more particles
- three-boson example in decent agreement with previous avoided-crossings analysis

Summary

Bound states

- wave function at large distances determines finite-volume energy shift
 - possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
 - leading volume dependence derived for S-wave states
- volume dependence also derived for mean squared radii Taurence + SK, arXiv:2401.00107 [nucl-th]

Summary

Bound states

- wave function at large distances determines finite-volume energy shift
 - possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
 - leading volume dependence derived for S-wave states
- volume dependence also derived for mean squared radii Taurence + SK, arXiv:2401.00107 [nucl-th]

Resonances

- finite-volume calculations provide a way to study exotic nuclei
- complex scaling method can be implemented in finite volume
 - ▶ gives direct access to resonance positions and lifetimes
 - leading volume dependence derived for two-cluster resonances
- promising numerical results also for three-body resonances
- complex scaling also enables single-volume extrapolations
 - ▶ for both bound states and resonances

Outlook

Resonance eigenvector continuation

- as the interaction changes, bound states can evolve into resonances
- resonance eigenvector continuation enables extrapolations along such trajectories

Yapa, SK, Fossez, PRC 107 064316 (2023)

Two-body examples

Work in progress

- extensions of the method to few- and many-body systems with N. Yapa and K. Fossez
 - Berggren basis can be used to replace simple uniform complex scaling
 - complex scaling in finite voulume enables few-body studies

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

... for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

... for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

...and to you, for your attention!